Structured Performance Tests

Adam Burke, 2020
@AdamBurkeware

Performance Tests Are Tests

Performance tests are hard
They are just tests though

Systematic and repeatable

Structure tests like tests

Putting the pieces together with DevOps tooling

Background

e Developer, Tester, Team Lead,
Architect, Researcher

e Electronic Trading, Low Latency,
High Performance, Big Data, Process
Mining

e Agile, Tooling, Continuous Delivery,
Test & Deployment Frameworks

e Java, P[J]ython, Robot, C, R, DBs, etc

e Frangipani Labs, QUT BPM group,
previously banks, exchanges, software QUT

#processscience #bpmatq ,

the university
for the real world \

houses and regulators

Performance Tests Are Hard

e Always testing against a model and a production scenario

o Eg 3x volume, partial outage, slow network

e Control different elements

Machine

Network

Out-of-process, end-to-end tests

Input parameters in the large

Read outputs through instrumentation

O O O O O O

Scenarios require more attention

e Microbenchmarks are also hard
o . and not the topic of this talk

Performance Tests Need Structure Too

If it hurts, do it more often - Martin Fowler (and others)

e Cheap, repeatable tests are more valuable than expensive one-offs
e Fast feedback on inadvertent performance degradation
e Plug into continuous integration pipeline

° All checks have passed Hide all checks

2 successful checks

NUnit Goncepts In Performance Tests

@BeforeClass | Redeploy environment

@Before Configure run and restart process

@Test One test scenario (2x volume, Christmas Eve pattern)

assertTrue() | Check benchmark met - post-run or asynch

@After Shutdown processes

@AfterClass Clear environment

import unittest

from company_harness import *

class LoadTest(unittest.TestCase):

def

def

setUp(self):
playbook('startup-env')

checkBaseline(self,result):

self.assertTrue(result.latency(0.95) < 100)
self.assertTrue(result.throughput() >= 50)
self.assertEqual (0, len(result.errors))

test_boxing_day_sale(self):
result = run_injection(datasource = 'log_20191226",
scale = 3,
rate = 100)
self.checkBaseline(result)

test_hot_new_widget(self):

result = run_injection(datasource = widget_order_generator,
rate = 80)

self.checkBaseline(result)

test_partial_net_outage(self):

playbook('shutdown-node 3 5')

result = run_injection(datasource = '1og_20200130", rate=50)
self.assertTrue(result.latency(0.90) < 2000)
self.assertTrue(result.throughput() >= 20)
self.assertTrue(len(result.errors) < 400)

tearDown(self):
playbook('shutdown-env')

When and How to Assert

® The hardware is a parameter, so it can’t be shared
e Measure either post-run or asynch

e Post-run
o Simpler,
o Can’t fast fail

e Asynchronously and on separate hardware
o Test and reuse production instrumentation
m See eg.: Charity Majors (@mipsytipsy) on ops and observability

Test Against A Model

e Follow all the disciplines to make
test production-like, but

e ..there’s only one production

e You are always testing against a
model, choose it consciously

Performance
Test cases

Deployment
playbooks

.| Performance Test

\

Application

/

Harness

Continuous Build |

/

Instrumentation

@AdamBurkeware

Data Choice Challenges

e Performance test parameters are inherently large
e Ensure the application is the bottleneck, not the test harness

e Replay
o Realistic, but hard to associate scenarios

e Generated events

o Requires work to vary data from prototype data
o eg to spread load across instances

e One Giant Test Case problem

ONE GIANT REPLAY TEST LOG

Agile Teams Are Bad At Recurring Infrequent Tasks

Feature Backlog

e Daily - probably ok
o Weekly - less likely
e Less often than weekly ..

o Ends up on a backlog competing with features
o Effort spirals as gets more out of date

e Run from continuous build - ie > daily

e All teams are pretty bad at infrequent tasks

o requires bureaucracy or long-cycle ritual

DevOps Tools Make Performance Tests Cheap

Separated hardware

Cloud

Build traceability and signoff

Continuous build

Clean production-like version and | Deployment playbooks
config
Reconfiguration for different cases | Deployment playbooks

Data production and collection

Process monitoring APIs and
instrumentation

Some Established Frameworks

/

/ Meter”

Leverage if it makes sense - some good pre-cooked tooling
Focus on mechanics of capture and replay
Can be web-centric and less relevant to back-ends

Need to design structure of tests still there

.. But Don't Forget These

@. python puppet

Ta b'I fConfent.s unittest
[i '
A NSIBLE S

M= Hackage :: [Package]

HUnit: A unit testing framework

Performance Tests Are Tests

Performance tests are hard
They are just tests though

Systematic and repeatable

Structure tests like tests

Putting the pieces together with DevOps tooling

Thanks for your time.

@AdamBurkeware

