
Structured Performance Tests
Adam Burke, 2020

@AdamBurkeware



Performance Tests Are Tests
● Performance tests are hard

● They are just tests though

● Systematic and repeatable

● Structure tests like tests

● Putting the pieces together with DevOps tooling



Background
● Developer, Tester, Team Lead, 

Architect, Researcher

● Electronic Trading, Low Latency, 

High Performance, Big Data, Process 

Mining

● Agile, Tooling, Continuous Delivery, 

Test & Deployment Frameworks

● Java, P[J]ython, Robot, C, R, DBs, etc 

● Frangipani Labs, QUT BPM group, 

previously banks, exchanges, software 

houses and regulators



Performance Tests Are Hard
● Always testing against a model and a production scenario

○ Eg 3x volume, partial outage, slow network

● Control different elements

○ Machine

○ Network

○ Out-of-process, end-to-end tests

○ Input parameters in the large

○ Read outputs through instrumentation

○ Scenarios require more attention

● Microbenchmarks are also hard

○ .. and not the topic of this talk



Performance Tests Need Structure Too
If it hurts, do it more often - Martin Fowler (and others)

● Cheap, repeatable tests are more valuable than expensive one-offs

● Fast feedback on inadvertent performance degradation

● Plug into continuous integration pipeline



NUnit Concepts In Performance Tests
@BeforeClass Redeploy environment

@Before Configure run and restart process

@Test One test scenario (2x volume, Christmas Eve pattern)

assertTrue() Check benchmark met - post-run or asynch

@After Shutdown processes

@AfterClass Clear environment



Example



When and How to Assert
● The hardware is a parameter, so it can’t be shared

● Measure either post-run or asynch

● Post-run

○ Simpler,

○ Can’t fast fail

● Asynchronously and on separate hardware

○ Test and reuse production instrumentation 

■ See e.g.: Charity Majors (@mipsytipsy) on ops and observability



Test Against A Model
● Follow all the disciplines to make 

test production-like, but

● … there’s only one production

● You are always testing against a 

model, choose it consciously



@AdamBurkeware

Application

Instrumentation

Application
Application

Performance Test 
Harness

Performance
Test cases

Deployment 
playbooks

Continuous Build



Data Choice Challenges
● Performance test parameters are inherently large

● Ensure the application is the bottleneck, not the test harness

● Replay

○ Realistic, but hard to associate scenarios

● Generated events

○ Requires work to vary data from prototype data

○ eg to spread load across instances

● One Giant Test Case problem





Agile Teams Are Bad At Recurring Infrequent Tasks
● Daily - probably ok

● Weekly - less likely

● Less often than weekly ...

○ Ends up on a backlog competing with features

○ Effort spirals as gets more out of date

● Run from continuous build - ie > daily

● All teams are pretty bad at infrequent tasks

○ requires bureaucracy or long-cycle ritual



DevOps Tools Make Performance Tests Cheap
Separated hardware Cloud

Build traceability and signoff Continuous build

Clean production-like version and 

config

Deployment playbooks

Reconfiguration for different cases Deployment playbooks

Data production and collection Process monitoring APIs and 

instrumentation



Some Established Frameworks

● Leverage if it makes sense - some good pre-cooked tooling

● Focus on mechanics of capture and replay

● Can be web-centric and less relevant to back-ends

● Need to design structure of tests still there



… But Don’t Forget These



Performance Tests Are Tests
● Performance tests are hard

● They are just tests though

● Systematic and repeatable

● Structure tests like tests

● Putting the pieces together with DevOps tooling

Thanks for your time.

@AdamBurkeware


