
Stochastic Process Model-Log Quality Dimensions an experimental study

Adam Burke, *Sander Leemans*, Moe Wynn, Wil van der Aalst and Arthur ter Hofstede

Stochastic Models

- Event logs are stochastic
 e.g. the log
 [⟨a, b⟩²⁰, ⟨a, b, c⟩², ⟨a, b, c, c⟩¹, ⟨e, f⟩¹]
 ... already has frequency information
- Control-flow models discard stochastic information
- Stochastic process models retain stochastic information
- Simulation, analysis and recommendation need stochastic information

A Stochastic Model

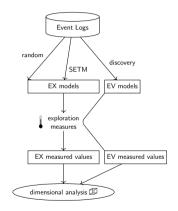
What dimensions describe the quality of stochastic process models?

Stochastic Conformance Checking Measures

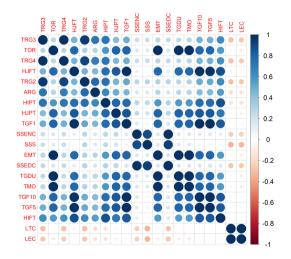
Exploration measures (13 new)

- Earth Movers' trace-wise (1)
- Probability mass (2)
- Fitness (6)
- Precision (2)
- Simplicity (3)
- Generalisation (4)

Discover dimensions

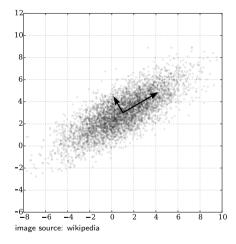

Evaluation measures

- Earth-Movers' Stochastic Conformance
- Entropy recall
- Entropy precision

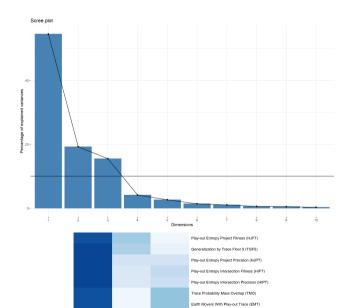

Identify dimensions

Discovering the Dimensions

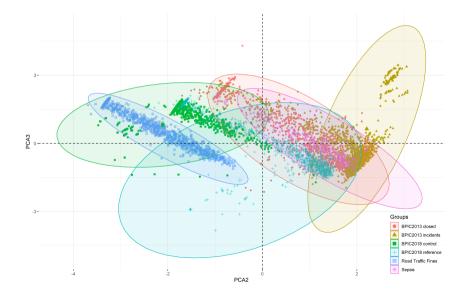
- 1. Use 6 public logs
- 2. 9301 stochastic process models random, new genetic algorithm & discovered
- 3. 18 exploration measures
- 4. Dimensional analysis


Dimensional Analysis 1: Correlations

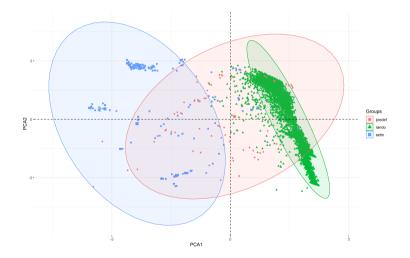
- Baselines: 2 log-only measures
- Remove: 3 too-correlated measures: Trace Overlap Ratio, Trace Generalization Floor-1, Trace Generalization Floor-10


Dimensional Analysis 2: Principal Component Analysis

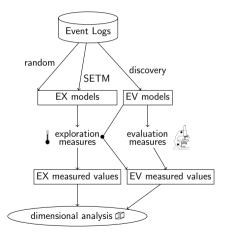
- Find linear relation that best describes the data
- Find linear relation that best describes the data, orthogonal to first relation
- ... (15 times)



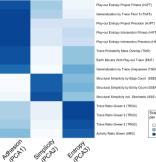
Dimensional Analysis 2: Principal Component Analysis


- 15 linear combinations of measures
- Scree plot: we choose 3

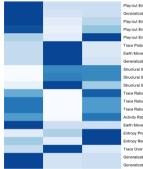
Principal Components - Variation By Log



Principal Components - By Model Generator


Identifying the Dimensions

- Remove random & genetic models
- Add the 3 evaluation measures on EV models only
- Redo principal component analysis


Identifying the Dimensions: comparison

Discovered dimensions

It Entropy Project Fitness (HJFT)	
lization by Trace Floor 5 (TGF5)	
It Entropy Project Precision (HJPT)	
t Entropy Intersection Fitness (HIFT)	
It Entropy Intersection Precision (HIPT)	
Probability Mass Overlap (TMO)	
fovers With Play-out Trace (EMT)	
alization by Trace Uniqueness (TGDU)	
ral Simplicity by Edge Count. (SSEDC)	
ral Simplicity by Entity Count (SSENC)	
ral Simplicity incl. Stochastic (SSS)	
Ratio Gower 4 (TRG4)	
Ratio Gower 3 (TRG3)	Scaled contributions per component
Ratio Gower 2 (TRG2)	min min
Ratio Gower (ARG)	mid max

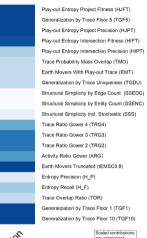
Identified dimensions

Play-out Entropy Project Fitness (HJET) Generalization by Trace Floor 5 (TGE5) Play-out Entropy Project Precision (HJPT) Play-out Entropy Intersection Fitness (HIFT) Play-out Entropy Intersection Precision (HIPT) Trace Probability Mass Overlap (TMO) Earth Movers With Play-out Trace (EMT) Generalization by Trace Uniqueness (TGDU) Structural Simplicity by Edge Count (SSEDC) Structural Simplicity by Entity Count (SSENC) Structural Simplicity incl. Stochastic (SSS) Trace Ratio Gower 4 (TRG4) Trace Ratio Gower 3 (TRG3) Trace Ratio Gower 2 (TRG2) Activity Ratio Gower (ARG) Earth Movers Truncated (tEMSC0.8) Entropy Precision (H P) Entropy Recall (H F) Trace Overlap Ratio (TOR) Generalization by Trace Floor 1 (TGF1) Generalization by Trace Floor 10 (TGF10)

Play-out Entropy Project Fitness (HJET) Generalization by Trace Floor 5 (TGE5) Play-out Entropy Project Precision (HJPT) Play-out Entropy Intersection Fitness (HIFT) Play-out Entropy Intersection Precision (HIPT) Trace Probability Mass Overlap (TMO) Earth Movers With Play-out Trace (EMT) Generalization by Trace Uniqueness (TGDU) Structural Simplicity by Edge Count (SSEDC)

Three Empirical Dimensions

Adhesion

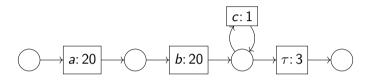

How little effort is required to transform one stochastic language into another

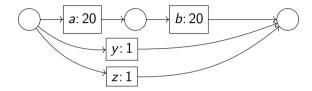
Entropy

The amount of information in a system

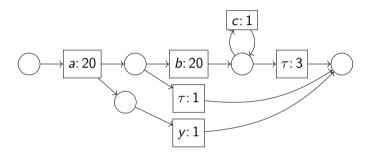
In this case, the combination of log and model

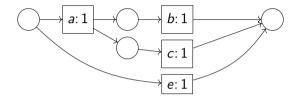
 Simplicity Structural simplicity of the model





Play-out Entropy Project Fitness (HJFT) Generalization by Trace Floor 5 (TGF5) Play out Entropy Project Provision (HJRT)


Adhesion + entropy + simplicity +


Adhesion + entropy - simplicity +

Adhesion \sim entropy \sim simplicity -

Adhesion - entropy - simplicity \sim

Limitations

- \blacktriangleright First models are process trees \rightarrow representational bias
- SETM evolutionary fitness function may tend to correlate measures
 - Robustness tests excluding SETM still show the effect, though
- Largest log 200 000 traces

- Three empirically derived dimensions
- Focus on empirical and orthogonality
- Other measures and principles may be non-orthogonal but still useful, eg recall and precision entropy measures
- Future work
 - Theoretical grounded measures for these dimensions
 - Further tests