
Stochastic Process Discovery By Weight
Estimation

Adam Burke (�) , Sander J. J. Leemans , and Moe Thandar Wynn

Queensland University of Technology, Brisbane, Australia,
at.burke@qut.edu.au,s.leemans@qut.edu.au,m.wynn@qut.edu.au

Abstract. Many algorithms now exist for discovering process models
from event logs. These models usually describe a control flow and
are intended for use by people in analysing and improving real-world
organizational processes. The relative likelihood of choices made while
following a process (i.e., its stochastic behaviour) is highly relevant
information which few existing algorithms make available in their
automatically discovered models. This can be addressed by automatically
discovered stochastic process models.
We introduce a framework for automatic discovery of stochastic process
models, given a control-flow model and an event log. The framework
introduces an estimator which takes a Petri net model and an event
log as input, and outputs a Generalized Stochastic Petri net. We apply
the framework, adding six new weight estimators, and a method for
their evaluation. The algorithms have been implemented in the open-
source process mining framework ProM. Using stochastic conformance
measures, the resulting models have comparable conformance to existing
approaches and are shown to be calculated more efficiently.

Key words: Stochastic Petri nets, process mining, stochastic process
mining, stochastic process discovery

1 Introduction
The world abounds in information systems, generating data about the

processes they mediate, execute, or observe. Using this data to compute
and analyze process models is the concern of process mining [3], within the
field of Business Process Management (BPM). BPM studies the impact and
improvement of processes in organizations. Automatic process discovery is
one aspect of process mining concerned with finding a formal process model
computationally from an input event log.

To understand a process, we often want to know how likely an event is. If we
travel to work, a journey where our train reliably arrives on time is different from
one where the train sometimes breaks down, is sometimes replaced by a bus, or
is often so crowded that it’s quicker to ride a bike. A highly contagious disease
with rare side effects differs importantly from one difficult to transmit but with
severe side effects, even if observable symptoms are similar. Detecting fraud in
financial transactions depends on recognizing certain client actions happening
more frequently than usual. Existing process mining techniques already recognize

https://orcid.org/0000-0003-4407-2199
https://orcid.org/0000-0002-5201-7125
https://orcid.org/0000-0002-7205-8821
at.burke@qut.edu.au, s.leemans@qut.edu.au, m.wynn@qut.edu.au

2 Adam Burke et al.

this: where noise or probability is considered in creating control flows (e.g. [30,
19]), they acknowledge the importance of likelihood in process modeling. Better
stochastic representations and stochastic-aware techniques have been flagged as
a key research challenge for process mining [2].

Process discovery techniques have become quite sophisticated at determining
causal relationships between activities from event logs, and representing that
in process models. There are far fewer techniques for discovering relative
probabilities (discussed in Section 5). We introduce a framework in Section 3
which leverages this by allowing transformation of models with only control
flows into stochastic process models. This extends an existing stochastic
process discovery technique by Rogge-Solti et al (RSD) [25, 26], in two ways.
Firstly, it generalizes one estimation algorithm to a general class of weight
estimators. Secondly, it specializes the possible outputs from general probability
distributions to Generalized Stochastic Petri Nets (GSPNs) [4]. The framework
does not prescribe whether the estimation calculation is deterministic, uses
stochastic simulation, or other techniques, and our introduced estimators include
both deterministic and non-deterministic types.

We describe our approach as a form of Stochastic Process Discovery, as
it takes an event log input and produces a GSPN output. In decoupling
weight estimation from control flow discovery, the technique also shares some
features with process model enhancement for time and probability [3, p290].
Unlike enhancement techniques, estimators can potentially change control flows
when producing a stochastic process model. Stochastic process models have a
corresponding, emerging, set of stochastic process conformance measures [20, 21,
16]. Consequently, the algorithms and models presented here are evaluated, in
Section 4, as stochastic process discovery algorithms, using stochastic process
conformance measures. Evaluation, which also includes performance, is against
real-life event logs, multiple control flow discovery algorithms, and RSD [25].

In the next section, we introduce existing concepts. In Section 3, we
describe the weight estimation framework and instantiate it by introducing novel
estimators. In Section 4, the results of using the estimators on real-world event
logs are presented. Related work is reviewed in Section 5, and Section 6 concludes
the paper.

2 Preliminaries
Petri nets and Generalized Stochastic Petri Nets are well-established

formalisms for modelling processes and a number of good overviews exist [4,
8]. We use notations from the process mining literature [3, 21].

A Petri net is a tuple PN = (P, T, F,M0), where P is a finite set of places,
T is a finite set of transitions, and F : (P × T)→ (T × P) is a flow relation. A
marking is a multiset of places ⊆ P that indicate a state of the Petri net, with
M0 the initial marking. A transition is enabled if every incoming place contains a
token. A transition fires by changing the marking of the net to consume incoming
tokens and producing tokens for its outgoing transitions. For a node n ∈ P ∪ T ,
we define •n = {y | (y, x) ∈ F} and n• = {y | (x, y) ∈ F}.

Stochastic Process Discovery By Weight Estimation 3

A Generalized Stochastic Petri Net (GSPN) is a tuple (P, T, F,M0,W, Ti, Tt)
such that Ti ⊆ T , Tt ⊆ T and Ti ∩ Tt = ∅. Weight function W : T → R+

assigns each transition a weight. Ti is a set of immediate transitions. If multiple
transitions Te ⊆ Ti are enabled in a particular marking, the probability of a

transition t ∈ Ti firing is given by W (t)
Σt′∈Te

W (t′) . Tt is a set of timed transitions.

Immediate transitions take priority over timed transitions. A timed transition,
if enabled, fires according to an exponentially distributed wait time. Given a set
of enabled timed transitions Te ⊆ Tt, a particular transition t fires first with

probability W (t)
Σt′∈Te

W (t′) [4].

Event logs. A process consists of activities from the set A. A trace is a non-
empty sequence of activities, and an event log L is a finite multiset of traces
observing the underlying process. Partial function λ : T → A designates labels
for Petri net transitions that represent log activities. The number of traces in a
log L is denoted with |L|, while the the number of events is denoted with ||L||.

Control Flow Process Discovery. A process discovery algorithm for Petri Nets
is then defined by cfd : L→ (P, T, F,M0).

Sequence operations. A finite sequence over A of length n is a mapping σ ∈
{1..n} → A and denoted by σ = 〈a1, a2, ..., an〉 where ∀iai = σ(i). Concatenation
operator + appends one sequence to another such that 〈a1, ..., an〉+〈b1, ..., bm〉 =
〈a1, ...an, b1, ..., bm〉. The tail function is then tail(〈a〉+ σ) = σ.

Subsequence. Function ct returns the number of times a subsequence is

present in a sequence: ct(ς, σ) =


0 if σ = 〈〉
1 + ct(ς, tail(σ)) if σ = ς + x

ct(ς, tail(σ)) if σ 6= ς + x

Alignments. An alignment [1] represents paired paths between a log and a
model. That is, a move is a tuple where (a, t) represents a synchronous move
on activity a in a trace and a transition t in the model (with the same label:
λ(t) = a), (a,⊥) represents a log move, and (⊥, t) represents a model move. For
our purposes, we assume that a function γ is available taking a Petri net, a set
of final markings and an event log, and that γ returns a sequence of move tuples
that represent all moves necessary to align every trace in the log.

3 Stochastic Process Model Weight Estimation
In this section, we first introduce our framework to transform a Petri net

into a GSPN using an event log. Then, we introduce six estimators using the
framework, which we will illustrate using the running example shown in Figure 2.
Estimators are a large solution space with many potential algorithms. Our six
estimators are chosen to emphasize broad applicability of inputs, computational
tractability, using the implicit causal information in control flow models, and
reapplying established process mining concepts.

3.1 A Framework for GSPN Discovery

The framework defines functions which together transform an event log into
a GSPN, as shown in Figure 1.

4 Adam Burke et al.

A stochastic process discovery algorithm for GSPNs (mine spn) is a function
mine spn : L → (P, T, F,M0,W, Ti, Tt). Our framework considers functions
of the form mine spn = est(cfd(L), L). Functions est : L × (P, T, F,M0) →
(P, T, F,M0,W, Ti, Tt) are termed estimators.

Functions se : L× (P, T, F,M0)→ T ×R+ are simple weight estimators and
use the control flow of the input Petri net intact in the output Petri net, such
that for discovered control flow model cfd(L) = (Pd, Td, Fd,Md0),

∃pe∈estpe = (Pd, Td, Fd,Md0, se(L, (Pd, Td, Fd,Md0)), Td, ∅)

The estimators discussed next are of this simpler form.
Specific estimators may have further restrictions on their inputs, or provide

guarantees on their outputs. For example, estimators discussed below do not
distinguish transitions with duplicate labels. A challenge common to several
estimators is treatment of silent transitions, as those transitions in a discovered
model serve a structural role and do not directly represent an activity in the log.
Assigning such a transition a weight of zero in a stochastic net is equivalent to
deleting the transition, and all subsequent model paths. To avoid this impact,
default values are assigned to silent transitions where the calculation would
otherwise result in zero weights. In general, estimators make no distinction
between silent transitions and transitions without a corresponding activity in the
log. In the remainder of this section, we introduce several examples of estimators
that instantiate this framework.

3.2 Frequency Estimator

The first estimator, wfreq, straightforwardly uses how often each transition
t appeared in the event log L:

wfreq(L, t) = max(1, Σσ∈L ct(〈λ(t)〉, σ))

Silent transitions are assigned the arbitrary weight of 1, equivalent to a single
observation in the log. The complexity of this estimator is linear in the number
of events in the log. Figure 2c shows the results of this estimator on our running
example, e.g. wfreq(EL, b) = 15.

3.3 Activity-Pair Frequency Estimators

An Activity-Pair Estimator uses the frequency of pairs of successor activities
to better reflect the constraints of more general Petri nets. These are edge-
structured estimators, in that Petri net edges inform the weighting.

We first introduce some frequency definitions. The functions qI and qF
capture how often an activity appears as the first/last in a trace. The function
qP captures the frequency of activity pairs in the log, that is, where the two
given activities follow one another directly in the log:

Log
Control flow

Discovery
Petri net Estimator GSPN

discover estimate

Fig. 1: Our framework for GSPN Discovery.

Stochastic Process Discovery By Weight Estimation 5

[〈a, b, c, d〉5,

〈a, c, b, d〉4,

〈a, b, b, d〉2,
〈a, b, c, b, d〉]

(a) Log EL.

a

c

b

τ d

(b) Petri net EPN .

wfreq wlhpair wrhpair wpairscale wfork walign

a 12 12 12 1 11
49

12 12
b 15 8 7 35

49
8 14

c 10 4 5 1 1
49

4 10
11

9
d 12 12 12 1 11

49
11 6

13
12

τ 1 1 1 1 129
143

0

(c) Six example estimators.

Fig. 2: Running example of an event log and a Petri net, and the estimators.

qI(L, t) = |[〈λ(t), . . .〉 ∈ L]|
qF (L, t) = |[〈. . . , λ(t)〉 ∈ L]|

qP (L, s, t) = Σσ∈L ct(〈λ(s), λ(t)〉, σ)

There are both left-handed and right-handed variants of the Activity-
Pair estimator, depending on whether weights are informed by successor or
predecessor transitions, defined as:

wlhpair(L, t) = max(1, qI(L, t) + qF (L, t) +
∑

s∈•(•t)

qP (L, s, t))

wrhpair(L, t) = max(1, qI(L, t) + qF (L, t) +
∑

s∈(t•)•

qP (L, t, s))

There are no restrictions on input Petri nets and they can be calculated in
time O(||L|||F |), that is, the number of events times the number of model edges.

When using activity pair frequency data, two important types of path
through the model are neglected for any given trace: paths from the initial
place to the first transition, and the paths from the last transition to the final
place. Traces of length one are also invisible from this perspective. To account
for this, how often an activity appears as the initial or final activity in a trace is
also included in the weight estimation. Note that not all activity pairs occurring
in the log are used to calculate the resulting transition weights. For instance,
where a given Petri net represents two transitions a and b as concurrent, the
frequency of 〈a, b〉 will not be used. In our running example (see Figure 2c),
wlhpair(EL, c) = 4 and wrhpair(EL, c) = 5.

3.4 Mean-Scaled Activity-Pair Frequency Estimator

The previous estimators depend on the size of the log. Two logs with the
same traces in the same ratios will result in two models with two distinct
sets of weights, which challenges human analysis. Though comparison and
comprehensibility of stochastic process models appears not to have been
directly addressed in the literature, it is consistent with research that finds
“small variations between models can lead to significant differences in their
comprehensibility” [24] and the usability principle of minimizing user memory
load. The mean-scaled activity-pair estimator wpairscale mitigates this effect by

scaling weights by average transition frequency (||L|||T |) in the log L:

6 Adam Burke et al.

pairscale(L, T, t) =
qI(L, t) + qF (L, t) +

∑
s∈(t•)• qP (L, t, s)

||L||
|T |

wpairscale(L, (P, T, F,M0), t) =

{
pairscale(L, T, t) if pairscale(t) 6= 0

1 otherwise

One effect of defaulting after scaling is that silent or unrepresented transitions
are weighted more heavily, that is, the same as an activity of mean-frequency,
rather than the equivalent of an activity occurring once in the log. In our running
example of Figure 2c, ||L|| = 49, |T | = 5 and the numerator of pairscale is equal
to wrhpair for a, b, c and d. Then, for instance wpairscale of c is 10

49
5

= 1 1
49 .

3.5 Fork Distribution Estimator

The Fork Distribution Estimator wfork uses a two-stage approach: it first
assigns weights to each place in a Petri net using activity-pair frequencies.
Second, it distributes those weights to transitions according to the activity
frequency in the event log.

pw(L, p) =

{
|L| if p ∈M0

Σs∈•pΣt∈p•qP (L, s, t) otherwise

placeWeights(L, p) = max(1, pw(L, p))

wfork(L, (P, T, F,M0), t) = Σp∈•tplaceWeights(L, p)
wfreq(t)

Σp•
t′ wfreq(t

′)

This estimator only applies to Petri nets which have at least one place without
incoming edges, such as workflow nets [3, p81]. This is an edge-structured
estimator informed by the structure of the input net. The complexity is
O(||L|| |F |). The wfork estimator shares similarities with the Alpha algorithm [3,
p167], in that it treats a place as defining a neighbourhood of related activities
represented as transitions. In our example (Figure 2), let p1 be the top-
right place and p2 the bottom-right place. Then, pw(EL, p1) = qP (c, d) +
qP (τ, d) = 5, pw(EL, p2) = qP (τ, d) + qP (b, d) = 7, placeWeights(EL, p1) = 5,
placeWeights(EL, p2) = 7 and wfork of d = 5 12

12 + 7 12
13 = 11 6

13 .

3.6 Alignment Estimator

The estimator walign applies alignments [1] to estimate weights. To this end,
it counts the number of times a transition t appears either as a model move or
as a synchronous move in the alignments:

walign(L,PN,MF , t) = |[(x, t) ∈ γ(PN,MF , L)]|

This algorithm only applies to Petri nets with at least one final marking.
The time complexity is O(|T | |γ|) plus the time to compute γ. The alignment
estimator has similarities with RSD [25], which fits duration distributions to
aligned logs. In our example of Figure 2, the last trace of log EL does not
fit the model EPN , as b is executed a second time and c is executed. Thus,

Stochastic Process Discovery By Weight Estimation 7

Log Petri net GSPN

Fodina [10]
Inductive Miner [19]
Split Miner [7]
discover

wfreq

wlhpair

wrhpair

wpairscale

wfork

walign

estimate

RSD [25]

tEMSC [20]
Entropy Recall & Precision [21]

entity count
edge count
duration
measures

BPIC2013 closed
BPIC2013 incidents

BPIC2013 open
BPIC2018 control

BPIC2018 dept
BPIC2018 reference

SEPSIS

Fig. 3: Set-up of the evaluation.

alignments will (based on a cost function, or if that does not discriminate the
options an arbitrary choice) include a log move on either b or a log move on c.
If the alignments choose a b for a log move, then walign(EL,EPN,MF , b) = 14
and walign(EL,EPN,MF , τ) = 0. Alignments are not always deterministic, and
consequently neither is walign.

4 Implementation and Evaluation

4.1 Evaluation Design

The six estimators introduced in Section 3 were implemented in the ProM
framework [13]1. For our evaluation, a discovery algorithm was applied to an
event log. Where necessary, the result was converted to a Petri net. Each
estimator was invoked on the resulting Petri net, resulting in a GSPN. Finally,
the conformance of the resulting GSPN was measured against the original log.
For comparison, an existing stochastic discovery algorithm by Rogge-Solti et
al [25] (RSD) was also applied to the log. This direct discovery algorithm
also outputs GSPNs, and the same conformance measures were applied. The
implementation of this plugin in ProM 6.9 uses the Inductive Miner internally
as an initial control flow discovery step, which has been updated from the
gradient-descent procedure described in [25]. Algorithms, reference event logs
and conformance measures are summarized as Figure 3.

Measures include (1) Truncated Earth Movers’ Distance (tEMSC) [20]
provides a measure expressing the cost of transforming the distribution of
activity traces from one stochastic language into another. We use a minimum
probability mass parameter setting of 0.8 for feasibility. (2) Entropy Precision
and Recall [21], are stochastic conformance measures based on the entropy of
equivalent automata constructed from a given log or model. (3) Petri net entity
count (places and transitions) and (4) edge count are used as structural simplicity
measures, ensuring that conformance quality has not been achieved by sacrificing
model simplicity and comprehensibility. Entity and arc counts have existing uses
in process model evaluation [14, 17], and were preferred here over behavioural
simplicity measures [16], though these measures also have limitations, including
specificity to Petri nets, and insensitivity to the stochastic perspective of GSPNs.

1 Source code is accessible via https://github.com/adamburkegh/spd_we

https://github.com/adamburkegh/spd_we

8 Adam Burke et al.

The duration of a discovery process was also captured, and direct discovery times
are compared with combined runtimes for discovery and estimation.

The experiments were run on a Windows 10 machine with 2.3GHz CPU
and 50 Gb of memory allocated to each process on JDK 1.8.0 222. All logs
are publicly available at https://data.4tu.nl/. The full results for these
experiments are available in an accompanying technical report [11].

4.2 Results and Discussion

(a) tEMSC (b) entropy-recall (c) entropy-precision

Fig. 4: Results on BPIC 2018 Control log categorized by {estimator}-{control
flow algorithm}, plus RSD.

(a) tEMSC (b) entropy-recall (c) entropy-precision

Fig. 5: Results on BPIC 2018 Reference log.

The estimators produced different, relevant, stochastic models when applied
to a range of real-life logs. As seen in Figures 4 and 5, stochastic conformance for
these models was comparable, but not uniformly better, than existing techniques,
and was highly dependent on the discovery algorithm, and log.

The estimators combined well with the Inductive Miner and Split Miner
control discovery algorithms. Frequency-based estimators combined poorly with

https://data.4tu.nl/

Stochastic Process Discovery By Weight Estimation 9

Fig. 6: Run times for control flow discovery and weight estimation by event and
trace count. 12 hour time out for RSD [25] on sepsis log is excluded.

the Fodina discovery algorithm for some logs. This is at least partly due to
Petri net representational bias in the presented framework. Fodina outputs a
causal net, which was converted to a Petri net. The resulting Petri net includes
a large number of silent transitions, often intermediating between transitions
corresponding to activity pairs in the log. This can be seen distinctly in results
for BPIC 2018 reference log in Figure 5, where walign produces a stochastically
relevant model on the output of a Fodina input, but no other estimator does.
For Split Miner and Inductive Miner, though they use other representations
internally, the Petri net model produced used fewer silent transitions and were
less impacted by this property.

For the BPIC 2013 closed and incidents logs, Fodina returned a model
without an initial place, to which wfork, walign, tEMSC and Entropy-Recall
and Entropy-Precision conformance measures do not apply. For some algorithm-
estimator combinations, these conformance measures could not be calculated
due to soundness, time or memory constraints. Nevertheless, in these results it
is clear that tEMSC 0.8 is more sensitive to the stochastic perspective produced
by estimators than the Entropy Precision and Recall measures. Where RSD [25]
produced a model on which measures could be calculated, the resulting models
often conformed well to the logs, but not consistently better than the estimator-
produced models. There were a number of event logs where RSD returned no
model within the constraints of time (12 hour timeout) and machine memory, or
where conformance measures were unable to be calculated within time (5 hour
timeout) and memory constraints.

The run time of the estimators, which took never more than 10 seconds, was
always comparable or better than RSD, orders of magnitude better in some cases,
as shown in Figure 6. In the future, we aim to extend these experiments with
larger logs containing more traces, events, and activities. However, even though
our estimators returned results for each model and log combination quickly, the
conformance measures were the limiting factors in these experiments in terms

10 Adam Burke et al.

of time and memory, which indicates that future research should be directed
towards more efficient stochastic conformance checking techniques.

In summary, our new estimators, even the alignment-based walign, are able to
handle real-life event logs and outputs from existing discovery techniques much
faster than existing approaches. Depending on the applied discovery technique,
they can also achieve higher stochastic quality, providing alternatives to the
existing RSD discovery technique when analyzing control flow and stochastic
perspectives.

5 Related Work
Significant work exists on performance analysis using process mining and

Stochastic Petri Nets (SPNs) with pre-existing normative models. This includes
improving parameters from an input SPN [22, 29, 26], from models in UML
[9], and industrial case studies [26, 9]. These and other applications can benefit
directly from automatic discovery of stochastic models.

RSD [25] is a technique, with publicly available implementation, for
discovering Generally Distributed Transition Stochastic Petri Nets (GDT SPNs),
with some high level descriptions of techniques and algorithms preceding it [18,
15, 6]. RSD first discovers a control flow model in the form of a Petri net,
then performs a fitness calculation, and attempts to repair the model if fitness
is low. An alignment and replay calculation then informs the production of an
output GDT SPN. The distinction between control flow discovery and stochastic
perspectives is extended by our proposed framework to many possible weight
estimators. The post-control flow discovery steps in RSD are a weight estimator,
but not a simple estimator, in our terminology.

In [27, 28], queues are discovered in stochastic process mining using two
formalisms, Process Trees [28] and Queue-Enabling Colored Stochastic Petri
Nets [27]. The Process Tree approach is informed by statistics theory and uses
both Bayesian and Markov-Chain Monte-Carlo fitting.

Hidden Markov Models (HMMs) have seen some applications to stochastic
process discovery [12, 5]. For instance, [12] constructs HMMs for resource usage
using a variant of the Alpha algorithm [3, p167], an early process mining
algorithm with known weaknesses on real-world event data. [5] uses event log
data to prune unlikely paths from a HMM process model in the context of a
semi-automated stochastic process discovery procedure.

Declarative process models describe a process in terms of constraints on
behaviour. This contrasts with control-flow based process models, such as Petri
nets used in our framework, which describe permitted behaviour. Techniques for
automatic process discovery of probabilistic declarative models also exist [23].
Transforming the significant differences between the forms of control-flow and
declarative models, and evaluating the result for stochastic conformance, put
rigorous comparison beyond the scope of this paper.

6 Conclusion
The likelihood of an event is important information in understanding many

real-world processes. Automatically discovered stochastic process models may

Stochastic Process Discovery By Weight Estimation 11

then help analyze and improve organizations. In this paper we presented a
framework for discovery of General Stochastic Petri Nets (GSPNs) from logs. The
framework leverages existing control flow discovery algorithms, and introduces
estimators which transform discovered Petri nets into GSPNs. We introduced six
estimators; their implementation is publicly available, and evaluated against real-
life logs using multiple stochastic conformance measures. The evaluation used
three existing flow discovery algorithms, and an existing stochastic discovery
technique, finding models of comparable quality, across a broader range of logs,
in a generally shorter time.

The estimators presented here are not exhaustive, and we look forward to
future research on novel, improved estimators. The estimator framework also
implies the possibility of “direct stochastic discovery” algorithms which do not
use a separate control flow algorithm, but produce a control flow model as a
side-effect of a stochastic one. A simplicity measure sensitive to both structural
representation and stochastic information in a process model would be a useful
evaluation tool for work in this area, and is an avenue of future research.

Acknowledgement. Computational resources used included those provided by
the eResearch Office at QUT.

References
[1] Wil M. P van der Aalst, Arya Adriansyah, and Boudewijn van Dongen.

“Replaying history on process models for conformance checking and
performance analysis”. In: DMKD 2.2 (2012), pp. 182–192.

[2] Wil M. P. van der Aalst. “Academic View: Development of the Process
Mining Discipline”. In: Springer, 2020, pp. 181–196.

[3] Wil van der Aalst. Process Mining: Data Science in Action. 2nd ed.
Berlin Heidelberg: Springer-Verlag, 2016.

[4] M. Ajmone Marsan et al. “The effect of execution policies on the
semantics and analysis of stochastic Petri nets”. In: TSE (1989).

[5] Amirah Mohammed Alharbi. “Unsupervised Abstraction for Reducing
the Complexity of Healthcare Process Models”. PhD thesis. University
of Leeds, July 2019.

[6] Nikolas Anastasiou and William Knottenbelt. “Deriving coloured
generalised stochastic petri net performance models from high-precision
location tracking data”. In: PE. 2013, pp. 375–386.

[7] Adriano Augusto et al. “Split miner: automated discovery of accurate
and simple business process models from event logs”. In: KaIS (2019).

[8] F. Bause and P.S. Kritzinger. Stochastic Petri Nets: An Introduction to
the Theory. Vieweg+Teubner Verlag, 2002.

[9] Simona Bernardi et al. “A systematic approach for performance
evaluation using process mining: the POSIDONIA operations case
study”. In: QUDOS. 2016, pp. 24–29.

[10] Seppe K. L. M. vanden Broucke et al. “Fodina: A robust and flexible
heuristic process discovery technique”. In: DSS (2017), pp. 109–118.

12 Adam Burke et al.

[11] Adam Burke et al. Report On Stochastic Process Discovery By Weight
Estimation Experimental Results. Tech. rep. https://eprints.qut.
edu.au/204662/. Sept. 2020.

[12] Berny Carrera et al. “Constructing probabilistic process models based
on hidden Markov models for resource allocation”. In: BPM. 2014.

[13] Boudewijn F. van Dongen et al. “The ProM Framework: A New Era in
Process Mining Tool Support”. In: Petri Nets. 2005, pp. 444–454.

[14] Volker Gruhn and Ralf Laue. “Adopting the Cognitive Complexity
Measure for Business Process Models”. In: CI. 2006, pp. 236–241.

[15] Haiyang Hu, Jianen Xie, and Hua Hu. “A novel approach for mining
stochastic process model from workflow logs”. In: JCIS (2011).

[16] Anna Kalenkova et al. “A Framework for Estimating Simplicity of
Automatically Discovered Process Models Based on Structural and
Behavioral Characteristics”. In: ICPM. 2020.

[17] Krzysztof Kluza et al. “Square Complexity Metrics for Business Process
Models”. In: ABICT. Springer, 2014, pp. 89–107.

[18] Edouard Leclercq et al. “Identification of timed stochastic Petri net
models with normal distributions of firing periods”. In: IFAC (2009).

[19] Sander J. J. Leemans et al. “Discovering block-structured process
models from event logs-a constructive approach”. In: Petri nets. 2013.

[20] Sander J. J. Leemans et al. “Earth movers’ stochastic conformance
checking”. In: BPM forum. Springer, 2019, pp. 127–143.

[21] Sander J. J. Leemans et al. “Stochastic-Aware Conformance Checking:
An Entropy-Based Approach”. In: CAiSE. 2020, pp. 217–233.

[22] Chuang Lin et al. “Performance equivalent analysis of workflow systems
based on stochastic petri net models”. In: CoopIS. 2002, pp. 64–79.

[23] Fabrizio Maria Maggi, Marco Montali, and Rafael Peñaloza.
“Probabilistic Conformance Checking Based on Declarative Process
Models”. en. In: CAiSE. 2020, pp. 86–99.

[24] Jan Mendling, Hajo A. Reijers, and Jorge Cardoso. “What Makes
Process Models Understandable?” In: BPM. 2007, pp. 48–63.

[25] Andreas Rogge-Solti et al. “Discovering Stochastic Petri Nets with
Arbitrary Delay Distributions from Event Logs”. In: BPM workshops.
2014, pp. 15–27.

[26] Andreas Rogge-Solti et al. “Prediction of business process durations
using non-Markovian stochastic Petri nets”. In: IS (2015).

[27] Arik Senderovich et al. “Data-driven performance analysis of scheduled
processes”. In: BPM. 2016, pp. 35–52.

[28] Arik Senderovich et al. “Discovering Queues from Event Logs with
Varying Levels of Information”. In: BPM workshops. 2016, pp. 154–166.

[29] Loukas C. Tsironis et al. “Fuzzy Performance Evaluation of Workflow
Stochastic Petri Nets by Means of Block Reduction”. In: ToS (2010).

[30] A.J.M.M. Weijters and J.T.S. Ribeiro. “Flexible Heuristics Miner
(FHM)”. In: CIDM. 2011, pp. 310–317.

https://eprints.qut.edu.au/204662/
https://eprints.qut.edu.au/204662/

	Stochastic Process Discovery By Weight Estimation
	Adam Burke, Sander J. J. Leemans, Moe T. Wynn

