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Abstract. In process mining, extensive data about an organizational
process is summarized by a formal mathematical model with well-grounded
semantics. In recent years a number of successful algorithms have been
developed that output Petri nets, and other related formalisms, from
input event logs, as a way of describing process control flows. Such for-
malisms are inherently constrained when reasoning about the proba-
bilities of the underlying organizational process, as they do not explic-
itly model probability. Accordingly, this paper introduces a framework
for automatically discovering stochastic process models, in the form of
Generalized Stochastic Petri Nets. We instantiate this Toothpaste Miner
framework and introduce polynomial-time batch and incremental algo-
rithms based on reduction rules. These algorithms do not depend on
a preceding control-flow model. We show the algorithms terminate and
maintain a deterministic model once found. An implementation and eval-
uation also demonstrate feasibility.

Keywords: Stochastic Petri nets · process mining · stochastic process
discovery · stochastic process mining

1 Introduction
Modelling is a way for us to understand and navigate the world; some thinkers

argue it is the core activity of science [41]. Today’s world, with its cheap comput-
ers and voluminous data, makes new forms and subjects of modelling possible.
The last two decades have seen great progress in one form, process mining [1]
– the analysis of organizational processes using computational techniques and
large event logs. Process-mined models are then used to understand and improve
organizations.

Stochastic process models, such as Stochastic Petri Nets [4], are well-established
in fields from biology [26] to operations research [42] to describe evolving pro-
cesses with complex causalities, and relative probabilities. Stochastic process
mining discovers and analyzes stochastic process models. It is a relatively new
area of research which aims to exploit the sophistication of stochastic models to
advance our understanding of organizations and their frequent, or infrequent, be-
haviour. Currently few discovery and conformance techniques exist. Importantly,
these existing discovery techniques do not work well for a number of important
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real-world cases. They also often depend on control-flow models, limiting the use
of stochastic information in the construction of the control-flow itself.

In this paper we introduce a new stochastic process discovery framework,
Toothpaste Miner, which works with Generalized Stochastic Petri Nets
(GSPNs) [25,4] via a data structure targeted at process mining, the Probabilistic
Process Tree. Toothpaste Miner does “direct stochastic discovery”, i.e., it does
not rely on an initial control-flow discovery step, but calculates control-flow and
stochastic aspects of the model using a common abstraction. It proceeds by the
repeated application of reduction rules. We show polynomial-time computational
complexity, termination and deterministic properties of these algorithms. An
implementation, in Haskell, and its evaluation, against real-life event logs, shows
the technique’s practical relevance, and also that it trades off quality against
more complex models and longer execution times.

In Sections 2 and 3, below, we discuss related work and foundational con-
cepts. The Toothpaste Miner discovery algorithms and transformation rules are
introduced in Section 4, together with the Probabilistic Process Trees formal-
ism. Incremental discovery and noise-management optimisations are discussed
in Section 5. The implementation and evaluation are laid out in Section 6, before
we conclude in Section 7.

2 Related Work

Important existing work in this area includes that on stochastic process min-
ing, discovering Petri nets, and discovering probabilistic automata.

The stochastic process mining algorithms introduced in Sections 4.2 and 5 are
partially region-based. A number of process mining algorithms for region-based
control-flow discovery exist [10]. The Maximal Pattern Mining algorithm [23] is
a region-based algorithm which combines regular expression-like patterns in sys-
tematic ways, and helped inspire the loop and concurrency identification rules in
Section 4.3. Other sources for rules are Petri net and Stochastic Petri net reduc-
tions [40,35] and the Inductive Miner [20], which uses process trees. The Proba-
bilistic Process Trees introduced here extend process trees. (The term “stochastic
process tree” is already used to refer to decision trees, e.g. in [13].)

Within process mining, existing stochastic process discovery techniques can
be categorized as control-flow dependent, direct, or declarative. For control-
flow dependent discovery, one key technique discovers Generally Distributed
Stochastic Petri Nets (GDT SPNs) after alignment-based repair [30,31]. Other
techniques output Generalized Stochastic Petri Nets [9], trading some quality
for faster execution times, or combine control-flow models using Bayesian in-
ference [16]. Direct discovery techniques exist in the literature, as high level de-
scriptions or algorithms [33,17,2,15] and for structures other than Petri nets. One
recent discovery technique shows reduced error percentages by using a Bayesian
network with non-classical probability [28]. It is however constrained to exclude
loops and concurrency. Another recent technique [29] re-purposes the Direct Fol-
lows Graph Miner [21] to obtain a stochastic Direct Follows Model. Discovery
of declarative stochastic process models has also seen good progress in recent
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years [5,24], though the difficulties of comparing control-flow and declarative
models put them beyond the immediate scope of this article.

The problem of discovering probabilistic models from event data has three
broad classes of existing solutions validated by empirical trials [37]: Bayesian
inference, state merging, and parameter estimation.

Bayesian inference is a method where probability estimates are updated in
a specific form of cumulative average in response to the introduction of new
evidence. Bayesian inference on its own does not yield a structured and visualiz-
able model, just probability estimates for particular events, so cannot be directly
applied to process mining [8]. Probabilities obtained with Gibbs sampling [14]
have recently been successfully combined with an input control flow model for
stochastic process discovery [16].

State merging is exemplified by the Alergia algorithm [12], which discovers
Stochastic Finite-State Automata through state merges in cubic time; alterna-
tives such as MDI [36] achieve quadratic time complexity. Alergia can still be
competitive in real-world trials [37]. Both Alergia and MDI construct an in-
ternal prefix automaton with weights. This general algorithmic structure is also
used by our discovery algorithm in Section 4.2 and merge operators and rules in
Section 4.3. We adopt a Petri net-based data structure used in process discovery
algorithms, process trees [20],[1, p81], to manage state merges, instead of the
prefix trees used in Alergia.

The RegPFA framework [8] uses parameter estimation to do process predic-
tion. RegPFA uses an internal model for prediction based on Baum-Welch [3]. It
outputs a noise-filtered Petri net model for user consumption, which emphasizes
understandability against precision, and elides stochastic information.

To the best of our knowledge, the proposed techniques represent novel so-
lutions for discovering stochastic process models. The framework uses a well-
established process formalism (GSPNs) and supports loops and concurrency.
Rather than annotating stochastic information after finding a control-flow model,
it makes direct use of trace information from the event log to construct the
stochastic aspect of the model in concert with the control-flow.

3 Preliminaries

Generalized Stochastic Petri Nets (GSPNs) [25,4] and Stochastic Determinis-
tic Finite Automata [38,39] are well-established formalisms, and good overviews
exist [25,4,38,39]. Definitions in this section are based on the process mining and
Petri net literature [1, p80],[19]. We use N for natural numbers, R` for positive
real numbers, and B for booleans; ‚ separates quantifiers and predicates.

Event logs. A process consists of various activities. Let the set A be an alphabet
of activities for a process. A trace is a sequence of activities. Σ˚ is the set of all
possible traces over A. A language subseteqΣ˚ is a set of traces. An event log L
is a finite multiset of traces collating observations of the underlying process. Let
|L| represent the number of traces and ||L|| the number of activities in the log.
A log with ten traces of xa, by and six traces of xb, cy is written rxa, by10, xb, cy6s
following multiset notation in [32].
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Definition 1 (Petri nets). A Petri net [1,19] is a tuple PN “ pP, T, F,M0q,
where P is a finite set of places, T is a finite set of transitions, and F : pPˆT q Ñ
pT ˆP q is a flow relation. A marking is a multiset of places Ď P that indicate a
state of the Petri net, with M0 being the initial marking. A transition is enabled if
every incoming place contains a token. A transition fires by changing the marking
of the net to consume incoming tokens and producing tokens for its outgoing
places. A net where no further transitions may fire has reached a terminal state
and corresponds to a final marking.

Definition 2 (Generalized Stochastic Petri Net (GSPN)). A GSPN [25,4]
is a tuple pP, T, F,M0,W, Ti, Ttq such that pP, T, F,M0q is a Petri net. Weight
function W : T Ñ R` assigns each transition a weight. Ti is a set of imme-
diate transitions and Tt a set of timed transitions such that Ti Y Tt “ T and
TiXTt “ H. If multiple transitions Te Ď Ti are enabled in a particular marking,

the probability of a transition t P Te firing is given by W ptq
Σt1PTe

W pt1q . Immediate

transitions take priority over timed transitions. A timed transition, if enabled,
fires according to an exponentially distributed wait time. Given a set of enabled

timed transitions Te Ď Tt, a transition t fires first with probability W ptq
Σt1PTe

W pt1q .

Definition 3 (Generalized Stochastic Labelled Petri Net (GSLPN)). A
GSLPN [22] is a tuple pP, T, F,M0,W, Ti, Tt, Σ, λq where pP, T, F,M0,W, Ti, Ttq
is a GSPN. λ is a labelling function for transitions λ : T Ñ Σ Y tτu where
τ R Σ. When a transition t P T fires, if λptq “ a where a ‰ τ , the activity a has
executed. λptq “ τ is a silent transition where there is no evidence of activity
execution. The set of GSLPNs with only immediate transitions is denoted by G.

Definition 4 (Stochastic language). A stochastic language LΣ : Σ˚ Ñ r0, 1s
is a function which denotes a probability for each trace such that ΣtPΣ˚LΣptq “
1.

Definition 5 (Stochastic Deterministic Finite Automaton). A Stochastic
Deterministic Finite Automaton (SDFA) [11] is a tuple pS,A, σ, p, s0q where S
is a set of states, A is an alphabet, σ : S ˆ A Ñ S is a transition function,
p : S ˆAÑ r0, 1s maps state probability, and the initial state is s0 P S.

SDFAs are a special case of Probabilistic Finite-State Automata (PFAs) [38]
and SDFAs are also referred to as Deterministic Probabilistic Finite Automata
(DPFA) [38]. All event logs can be represented by SDFAs [19].

4 Process Discovery By Model Reduction

In this section we first introduce Probabilistic Process Trees (PPTs), which
add relative weights and some alternative operators to the process tree formal-
ism, and can be translated straightforwardly to GSLPNs. We then describe a
novel algorithm which uses Probabilistic Process Tree transformations for pro-
cess model discovery in terms of general rule properties. Lastly, concrete trans-
formation rules for manipulating these trees are introduced.
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Table 1: Translation of PPTs to GSLPNs.
Probabilistic Process Tree GSLPN

‘ : w (root)
I operator-specific

translation of ‘ : w
O

Ñ : w

x : w y : w
x : w y : w

ˆ : w

x : vx y : vy

x : vx

y : vy

^ : w

x : vx y : vy
τ : w

x : vx

y : vy

τ : w

œ
ρ
p : w

x : w τ : w

τ : 1

x : ρ´ 1

œ
m
n : w

x : w
x : w ...m times

(inclusive)... x : w

a : w a : w

τ : w τ : w

4.1 Probabilistic Process Trees

A Probabilistic Process Tree is view of a GSLPN, and a cousin of the process
tree [1, p78] which allows probabilistic choice. As in Section 3, A refers to a
finite set of activities with silent activity τ R A. We first define trees recursively,
followed by operators.

Definition 6 (Probabilistic Process Trees). A Probabilistic Process Tree
(PPT) is a tree of weighted nodes, where each node is denoted by s : w. The
universe of PPTs over activity set A is UA:

1. A single activity. For a P A, a : w P UA.
2. A silent activity. For τ R A, τ : w P UA.
3. An operator ‘ over one or more child trees. Given n ě 1, U1, ..., Un P UA,

then ‘pU1, ..., Unq : w P UA.
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Sub-trees. Ui is a sub-tree of its parent U “ ‘pU1, ...Ui, ..., Unq : w, and of
all trees of which U is a sub-tree. Trees are strictly equal, Ux “ Uy, when the
structures are isomorphic and each node and sub-tree is equal, including weights.
Activity powerset function exp gives the set of all activities in a given PPT.

In this paper, we consider operators
À

“ tÑ,^,ˆ,œp,œnu. These redefine
and extend non-probabilistic process tree operators to include weight semantics.

Sequential operator. The Ñ sequential operator executes its children in se-
quential order. To align weight with execution frequency, the weight of sequence
components is the parent’s weight. In the remainder of this paper, we may omit
the child weights, writing Ñ px, yq : w rather than Ñ px : w, y : wq : w.

Choice. The probabilistic choice operator ˆpU1, ..., Unq chooses one sub-tree
Ui “ si : wi for execution from its children, with probability wi

Σsj : wjPtU1,...,Unuwj
.

Concurrency. The concurrency operator ^ indicates parallel composition.
Each child must execute once with no constraint on order of execution.

Fixed Loops. The fixed loop operator œm
n pUq repeats its child tree m times.

As for sequences, the weight of the loop child is the weight of the parent loop.

Probabilistic Loops. The probabilistic loop operator œρ
p pUq executes the child

tree with the probability of exiting at each iteration determined by the function
Prtχ “ 0u “ 1

ρ where ρ P R`^ρ ě 1. The weight of the child node is the weight
of the parent loop.

@x, y, w1, w2, w3‚ Ñ px : w1, y : w2q : w3 P UA ùñ w1 “ w2 “ w3

@s1, .., sn, w1, .., wn ‚ ˆps1 : w1, ..., sn : wnq : w ùñ w “ Σpsj ,wjqwj

@s1, .., sn, w1, .., wn ‚ ^ps1 : w1, ..., sn : wnq : w ùñ w “ Σpsj ,wjqwj

@m,x,w1, w2 ‚m P N^ œm
n px : w1q : w2 ùñ w1 “ w2

@m,x,w1, w2 ‚ ρ P R`^ œρ
p px : w1q : w2 ùñ w1 “ w2

Size. The size of a PPT is the number of nodes, denoted by |UA|.

Example. One PPT, pe “ ˆpÑ pa : 2, b : 2q : 2,Ñ pb : 1, a : 1q : 1,œ3
p pc : 1q : 1q : 4,

can be seen in Figure 1, and has the stochastic languageΣE “ rxa, by
1
2 , xb, ay

1
4 , xc, c, cy

1
4 s.

ˆ : 4

Ñ : 2

a : 2 b : 2

Ñ : 1

b : 1 a : 1

œ3
n : 1

c : 1

Fig. 1: Example PPT pe.

Translation to Generalized Stochastic Petri
Nets. Having defined the syntax, and infor-
mally explained the meaning of PPT con-
structs, we now formally define the seman-
tics. PPTs have equivalent constructs in a
Generalized Stochastic Petri Net (GSPN),
summarized in Table 1.

Note that in the probabilistic loop œρ
p,

each iteration is a Bernoulli trial with the
number of iterations being a geometric vari-
able. In the GSPN translation, this results
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in a transition weight of ρ´ 1:

Prpœp exitq “
wexit
Σwi

GSPN choice definition

“
1

1` pρ´ 1q
“

1

ρ
œp definition

a : 2 b : 2

b : 1 a : 1

c : 1 c : 1 c : 1

Fig. 2: Translation of pe to a GSPN.

The translation of PPTs to GSPNs,
as described in Table 1, shows PPTs
are a subset of Probabilistic Finite Au-
tomata [38]. Figure 2 gives the transla-
tion of example PPT pe into a GSPN,
with a more sophisticated example
shown in Figure 4f.

4.2 A Discovery Algorithm
Framework

The Toothpaste framework describes reduction algorithms that “squeeze” an
initial trace model into a more summarized and useful form using transformation
rules. The framework is illustrated in Figure 3. After introducing component
elements, an example instantiation is made in Definition 7.

tm gspn

Φ

Fig. 3: Toothpaste framework.

Toothpaste miner algorithms first trans-
form an event log into an internal PPT. They
then repeatedly transform the PPT by apply-
ing transformation rules. These rules reduce,
summarize, or restructure the tree towards a
desirable form. When desired criteria for an
output process model are met, the PPT is
translated into a GSLPN as the final output.
Criteria may include quality criteria such as

fitness or precision thresholds, simplicity, or the preservation of certain critical
trace paths in the final model. As the miner proceeds largely by reduction from
an initial state which perfectly matches the event log, this allows for fine-grained
control over what elements of the initial log are preserved in the final model.

Event logs and discovery. Given an event log L “ rti11 , ..., t
in
n s, a trace model

PPT is given by tm : LÑ UA, where each trace is converted by st : xAy Ñ UA.

stpxa1, ..., amyq “Ñ pa1 : ij , ..., am : ijq : ij

stpxayq “ a : ij

tmpLq “ ˆpstpt1q, ..., stptnqq : |L|

For example, tmpxa, by, xcy3q “ ˆpÑ pa, bq : 1, c : 3q : 4.

Transformation. In the Toothpaste framework, discovery proceeds by the ap-
plication of transformation rules to a PPT, yielding progressively improved mod-
els. For rule sequences,` is used for concatenation and ran for the set of elements
in a sequence. We instantiate the framework using reduction rules, those which
reduce the total number of nodes in the tree, with specific rules in Section 4.3.
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Function Φ applies a sequence of transformation rules to a PPT.

Φ : UA ˆ xUA Ñ UAy Ñ UA

Φppt, xyq “ pt

Φppt, xryq “ rpptq

Φppt, xry ` rsq “ Φprpptq, rsqq

ΦM finds a local reduction minima by applying Φ exhaustively.

ΦM : UA ˆ xUA Ñ UAy Ñ UA

ΦM ppt, rsq “

#

ΦM ppt
1, rsq if pt ‰ pt1

pt otherwise

where pt1 “ Φppt, rsq

Both Φ and ΦM are guaranteed to terminate when used with reduction rules,
as the size of the input tree is monotonically decreasing. Informally, so long as
rules are chosen to preserve fidelity to the log, a minimal reducible model is
desirable. The degree to which fidelity is desirable can be controlled by which
rules are provided to the discovery algorithm. If a given ruleset is not confluent [7,
p10], finding a minimal model is not guaranteed and can depend on the sequence
in which the rules are applied.

Definition 7 (Toothpaste miner).

Given reduction rule sequence rs and GSLPN translation function gspn,

dtm : LˆxUA Ñ UAy Ñ G
dtmpL, rsq “ gspn ˝ ΦM ptmpLq, rsq is the direct toothpaste miner.

Example. An example of model discovery is in Figure 4, applying (and pre-
viewing) rules from Section 4.3. The trace model in 4a has identical xa, by traces
consolidated in model 4b. The repeated c activities are summarized with a fixed
loop in 4c. Concurrency of events a and b is identified in 4d, and a probabilistic
loop is introduced in 4e. Finally the PPT is translated to a GSPN in 4f.

Complexity. The computational complexity of the Φ algorithms depend on the
size of the PPT data structure. Function st produces a binary tree with 2|ti|´ 1
nodes for each trace ti. The full trace model produced by tm adds a choice node,
for a total size (and memory complexity) of Σp2|ti| ´ 1q ` 1 “ 2||L|| ´ |L| ` 1 or
Op||L||q.

The complexity of Φ depends on evaluating each node of the tree with re-
duction rules. If each sub-tree can be summarized with one traversal, the worst
case is comparing each node to each other node, giving OpΦpUA, Rqq “ |UA|

2|R|
comparisons. Writing UL for the full PPT trace model produced by tm, this is
limited by p2||L||q2|R| or OpΦpUL, Rqq “ Op||L||2|R|q.

Applying Φ exhaustively with ΦM requires executing this process a number
of times. So long as the rule list R is solely reduction rules, then the size of
the tree is monotonically decreasing. The worst case for time complexity is then
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ˆ : 4

Ñ : 1

a : 1 b : 1

Ñ : 1

a : 1 b : 1

Ñ : 1

b : 1 a : 1

Ñ : 1

c : 1 c : 1 c : 1

(a) Trace model tmpLEq.

ˆ : 4

Ñ : 2

a : 2 b : 2

Ñ : 1

b : 1 a : 1

Ñ : 1

c : 1 c : 1 c : 1

(b) Applying the Choice similarity rule FP.1.

ˆ : 4

Ñ : 2

a : 2 b : 2

Ñ : 1

b : 1 a : 1

œ
3
n : 1

c : 1

(c) Loop roll CO.2 (example pe).

ˆ : 4

^ : 3

a : 2 b : 1

œ
3
n : 1

c : 1

(d) Concurrent reduction FPL.1.

ˆ : 4

^ : 3

a : 2 b : 1

œ
3
p : 1

c : 1

(e) Geometric abstraction FPL.2

τ : 3

τ : 1

a : 2

b : 1

τ : 3

c : 2

τ : 1

(f) GSPN output for dtmpLEq.

Fig. 4: Discovery example using dtm.

also the best case for model size reduction and is bounded by the size of the
trace model, 2||L||. This yields OpΦM pL,Rqq “ Op||L||3|R|q. Translation to a
GSPN with the gspn function is linear in the size of the tree (see Table 1). The
overall worst-case time complexity is then dominated by the cubic term and is
Op||L||3|R|q.

4.3 Transformation Rules

Probabilistic Process Trees may be manipulated using transformation rules.
In this section we organize and classify rules two ways: by information-preservation
(using quality criteria), and by impact on determinism. After introducing some
useful functions for merging and scaling PPTs, we then explain specific rules.

Classification By Quality Criteria. Transformation rules are classified using
process model quality criteria of fitness, precision, and simplicity [1, p189], and
by the criteria of stochastic information loss. Standard process model quality
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ðñ Preserving but Non-Simplifying

ðñs

ñfps

ñfs

ñs

UA Ñ UA
Transformation rule

Simplifying Lossy

Fitness-Preserving

Fitness and Precision-Preserving

Preserving Compression

Fig. 5: Rule categories by information preservation.

criteria are control-flow criteria: they do not take the stochastic perspective into
account.

Consider log L with language LL and stochastic language ΣL, and model M
with language LM and stochastic languageΣM . Fitness is given by ftpLM , LLq “
|LMXLL|

|LL|
. In defining precision, we have to account for infinitely many traces,

due to the œp construct [34]. Low-probability traces which are longer than the
number of events in the log are filtered out in truncated language LTM :

LTM “ tt P LM | |t| ă ||L|| _ΣM ptq ą εu where 0 ă ε ! 1

Precision is then given by pnpLM , LLq “
|LTMXLL|

|LTM |
.

As a categorization tool for process model transformation rules, fitness and
precision are helpful in showing the loss or retention of information, even if they
are insensitive to stochastic information. The classification of reduction rules is
of particular interest, and necessary to maintain the monotonically simplifying
property of the discovery algorithm in Section 4.2. We categorize reduction rules
in four cuts: Preserving Compression, Fitness- and Precision-Preserving, Fitness-
Preserving, and Simplifying Lossy, as seen in Figure 5. Another useful category of
rules, Preserving but Non-Simplifying, change model structure without reducing
the size of the model.

No Loss Of Fitness Or Precision Without Loss of Stochastic Information. There
are no categories of “Fitness- and Stochastic Information-Preserving But Precision-
Reducing” or “Precision- and Stochastic Information-Preserving but Fitness
Reducing” transformation rules. Let stochastic fidelity between stochastic lan-
guages Σ1, Σ2 be @t P T ‚Σ1ptq “ Σ2ptq. Models that no longer have stochastic
fidelity have experienced stochastic information loss.

Theorem 1. It is not possible to maintain fitness and reduce precision without
also losing stochastic information from a model. Given log L, models M and M 1,
and corresponding stochastic languages ΣM , ΣM 1 :

ftpM,Lq “ ftpM 1, Lq ^ pnpM,Lq ą pnpM 1, Lq ùñ Dt ‚ΣM ptq ‰ ΣM 1ptq

Proof. Let ΣL be the stochastic language for a trace model, which then has full
stochastic information from the log. Let M 1 be a second model covering language
LM 1 such that ftpM,Lq “ ftpM 1, Lq ^ pnpM,Lq ą pnpM 1, Lq. By the fitness
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definition, |LMXLL|

|LL|
“
|LM1XLL|

|LL|
. As precision decreases, there must therefore be

at least one new trace t P M 1 ^ t R M , which is equivalent to ΣM ptq “ 0 and
ΣM 1ptq ą 0. As probabilities must sum to one, some other trace s P M must
have reduced in probability. Ds P LM ‚ΣM 1psq ă ΣM psq.

Case 1: Stochastic fidelity had been retained. ΣM psq “ ΣLpsq ‰ ΣM 1psq.

Case 2: Stochastic fidelity already lost. ΣM psq ‰ ΣLpsq. The trace t holds no
information for restoring stochastic information on s, as t is not an element of
the log L or covered by the original model M . [\

If |M
1
|

|M | ă
|LXM 1

|

|LXM | , and a rule reduces fitness, then precision increases. This

defines a sub-category of Simplifying Lossy Rules, however no useful concrete
rules were found in this sub-category.

Classification By Determinism. PPTs are not constrained to describe deter-
ministic languages. Non-determinism arises when the next symbol in a trace will
satisfy multiple paths through a process tree. This can be shown trivially with the
tree ˆpa : 1, a : 2q. The trace model produced by function tm may also produce
a non-deterministic tree, for example tmprxay, xa, bysq “ ˆpa : 1,Ñ pa, bq : 1q : 2.
Determinism is a desirable property in an output model: it makes problems
such as parsing and calculating the most probable path easier [38], and some
important stochastic conformance techniques are constrained to deterministic
models [19]. In this section we describe functions for calculating the determin-
ism of a model, and how rules may preserve determinism.

As the operators Ñ,œn, and œp are all sequential in form, the only PPT
operators which may introduce non-determinism are ˆ and ^. The function β
reports whether a tree is deterministic.

Let α : UA Ñ PpAq identify starting symbols

αpa : wq “ tau where a P A

αp‘pU1, ..., Unq : wq “

$

’

&

’

%

αpU1q where ‘ P tÑ,œn,œpu

αpU1q Y ...Y αpUnq where ‘ “ ˆ

exppU1q Y ...Y exppUnq where ‘ “ ^

Let αst : UA Ñ PpAq identify non-determinant sub-tree symbols

αstpa : wq “ H where a P A

αstp‘pU1, ..., Unq : wq “

#

αpU1q X ...X αpUnq where ‘ P tˆ,^u

αp‘pU1, ..., Unq : wq otherwise

Let β : UA Ñ B identify whether a tree is deterministic

βpUq where a P A

βp‘pU1, ..., Unq : wq “

#

@i ‚ βpUiq where ‘ P tÑ,œn,œpu

αstp‘pU1, ..., Unq : wq “ H where ‘ P tˆ,^u

βpUq only has to visit each node at most once, so can complete in Op|U |q
time.
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Table 2: PPT transformation rule classification by impact on determinism, given
U 1 “ trpUq for some rule tr.
Classification Definition Description

α-reducing αpU 1
q Ď αpUq ^ αstpU

1
q Ď αstpUq Separates and restricts relevant symbols

Non-optional No ˆ or ^ Special case of α-stable
α-stable αpU 1

q “ αpUq No change to relevant symbols
β-trap βpUq ùñ βpU 1

q Never introduces non-determinism. Super-
set of preceding types.

As PPTs are a subset of Probabilistic Finite Automata (PFAs), Determin-
istic Probabilistic Process Trees (DPPTs) are Stochastic Deterministic Finite
Automata (SDFAs) [38]. SDFAs are not closed under union [38] and DPPTs
combinations are not closed under ˆ; trivially, ˆpa : 1, a : 2q combines two de-
terministic sub-trees. However DPPTs have the useful property of being closed
under certain subsets of transformation rules.

Definition 8 (β-trap). A β-trap is a transformation rule which preserves de-
terminism: @U P UA, tr : xUA Ñ UAy ‚ tr is a β-trap ðñ βpUq ùñ βptrpUqq

We use α and β to classify rules by their impact on determinism in Table 2.

Theorem 2. DPPTs are closed under reduction by β-trap rules, so will not
introduce non-determinism to a deterministic model.

Proof. From the definition of β and β-trap, βpUq ùñ βptrpUqq, so the compo-
sition of β-trap rules is itself a β-trap. [\

DPPTs are closed under β-traprule composition, but not tree composition.

Theorem 3. Application of α-stable or α-reducing rules to a sub-tree preserves
the determinism of the parent tree, but a β-trap rule may not.

Proof. Consider possible transformation rule nbpÑ pa : 1, a : 1, b : 1qq “ ˆpa : 1, b : 1q.
(Note this is not a rule used for our discovery algorithm.) The rule preserves
determinism, as βpnbpxqq ^ βpxq. However, αpˆpa : 1, b : 1qq “ ta, bu Ą αpÑ
pa : 1, a : 1, b : 1q “ tau.

For α-stable and α-reducing rules tr, for process tree ‘pU1, ..., Unq, as
@i ‚ αptrpUiqq Ď αpUiq, the intersection αpUiq X αpUjq does not increase, so
βpUq ùñ βptrpUqq, the definition of a β-trap. [\

These results do not guarantee the discovery of a deterministic model, but
they do maintain the determinism of a reduced model once one is discovered.

Concrete Rules. The remainder of this section concerns concrete rules. We
use a, b P A for activities and u1, u2 P U to represent PPTs or sub-trees. Weights
are represented by vi, wi P R`. Unweighted operators or activities are repre-
sented by x, y such that x : w, y : v P UA. In each subsection, we introduce the
information-preservation category, then each rule in the category. The impact
on determinism, using the system in Table 2, is also shown.
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Helper Functions. These functions and relations help define transformation rules.
A scaling function, Γ pU, γq multiplies every weight in the tree by γ. Γ pre-

serves α-stability. PPTs are similar, denoted –c, when only weights need to be
changed to make them strictly equal.

A stochastic merge function, Ψ , combines two similar trees by adding weights,
œp repetitions being scaled by relative weight. Ψ preserves α-stability, and also
the control-flow fitness and precision of the input process trees, but loses stochas-
tic information, unless x “ y for Ψpx, yq.

Parameter Consolidation (Preserving but non-simplifying). The following asso-
ciativity rules allow all PPTs to be transformed into equivalent trees with at
most two children per operator. In our Toothpaste miner algorithms, such rules
must only be used in combination with reduction rules, to maintain monotonic-
ity of reduction; they act as meta-rules which allow other rules to be stated more
concisely. We denote these rules as ðñ . They are information-preserving and
perform no compression from left-to-right. They are all α-stable.

PC.1 Ñ ps1, s2, ..., snq : w ðñ Ñ ps1,Ñ ps2, ..., snq : wq : w
PC.2 ˆps1 : w1, s2 : w2, ..., sn : wnq : v

ðñ ˆps1 : w1,ˆps2 : w2, ..., sn : wnq : v ´ w1q : v
PC.3 ^ps1 : w1, s2 : w2, ..., sn : wnq : v

ðñ ^ps1 : w1,^ps2 : w2, ..., sn : wnq : v ´ w1q : v
PC.4 The ˆ and ^ operators are commutative. ‘pu, vq “ ‘pv, uq

The remaining rules are accordingly stated using at most two operator pa-
rameters.

Preserving Compressions. The following rules are information-preserving reduc-
tion rules, achieving compression by using a smaller tree to describe the same
stochastic language. They are denoted with ðñs and are all non-optional de-
terministic.

CO.1 Fixed loop identity. œ1
n puq : w ðñs u : w. This is used in reverse in FPL.7.

CO.2 Fixed Loop roll. Ñ px, xq : w ðñs œ2
n pxq : w

Ñ px,œm
n pxqq : w ðñsœ

m`1
n pxq : w

Ñ pœm
n pxq, xq : w ðñsœ

m`1
n pxq : w

CO.3 Silent sequence. Ñ pu, τq : w ðñsÑ pτ, uq : w ðñs u : w
CO.4 Silent concurrency. ^pu : w, τ : vq : w ` v ðñs Γ pu,

w`v
w q

CO.5 Fixed loop nesting. œn
n pœ

m
n puqq : w ðñsœ

nm
n puq : w

Fitness and Precision-Preserving With Stochastic Information Loss. For these
rules, stochastic information is preserved only where sub-trees are strictly equal,
as for Ψ . They are denoted with ñfps. The determinism properties vary by rule.

FP.1 Choice similarity reduction. Merge choices between structurally similar trees.
ˆpu1, u2q ñfps Ψpu1, u2q where u1 –c u2. This rule is α-stable.

FP.2 Choice folding. Pull up a common prefix into the head of a new sequence.
ˆppÑ pux1, u2q : w1q, pÑ pux2, u3q : w2q : w1 ` w2

ñfpsÑ pΨpux1, ux2q,ˆpu2, u3qq : w1 ` w2 where ux1 –c ux2. This rule is
α-reducing. (Illustrated in Figure 6).
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ˆ : w1 ` w2

Ñ: w1

x1 : w1 y : w1

Ñ : w2

x2 : w2 z : w2

ñfps

Ñ : w1 ` w2

Ψpx1 : w1, x2 : w2q ˆ : w1 ` w2

y : w1 z : w2

Fig. 6: Choice folding transformation rule for shared prefixes FP.2.

FP.3 Choice folding suffixes ˆppÑ pu1, uy1q : w1q, pÑ pu2, uy2q : w2qq : w1 ` w2

ñfpsÑ pˆpu1, u2q, Ψpuy1, uy2qq : w1 ` w2 where uy1 –c uy2. This rule is
α-stable.

FP.4 Choice skip. A common head is pulled into a sequence with a choice between
the tail and a silent activity. ˆpx1 : w1,Ñ px2, yq : w2q : v
ñfpsÑ pΨpx1 : w1, x2 : w2q,ˆpy : w2, τ : w1qq : v where x1 : w1 –c x2 : w2.
This rule is α-reducing.

FP.5 Choice skip suffix. ˆpx1 : w1,Ñ py, x2q : w2q : v
ñfpsÑ pˆpy : w2, τ : w1q, Ψpx1 : w1, x2 : w2qq : v where x1 : w1 –c x2 : w2.
This rule is α-stable.

FP.6 Concurrent similarity reduction. Similar concurrent subtrees reduce to rep-
etition. p^px1 : w, x2 : vq : w ` vq
ñfpsœ

2
n pΨpx1 : w, x2 : vqq : w ` vq where x1 –c x2. This rule is α-stable.

FP.7 Concurrent subsumption. Sequences already recognized as concurrent are
pulled under that pattern. ˆpÑ px1, y1q : w1,^px2 : w2, y2 : w3q : vq
ñfps ^pΨpx1 : w1, x2 : w2q, Γ pΨpy1 : w1, y2 : w3q,

w3

w1`w3
qq : v where x1 –c

x2 ^ y1 –c y2. This rule is α-stable.

Fitness-Preserving Lossy Reductions. These rules preserve control-flow fitness
of the input model with respect to a given log, but may reduce precision and
stochastic information. They are denoted with ñfs.

FPL.1 Concurrent reduction from choice sequences. Concurrency is inferred when
permutations of a given two-step sequence are seen. Generalizing concur-
rency involves re-scaling the weights of the merged sub-trees.
ˆpÑ pux1, uy1q : w,Ñ puy2, ux2q : vq : w ` v
ñfs ^pΓ pΨpux1 : w, ux2 : vq, w

w`v q, Γ pΨpuy1 : w, uy2 : vq, v
w`v q : w ` v

where ux1 –c ux2 ^ uy1 –c uy2.

When sub-trees are compound (that is, not activities), and applied across
partial parameters, as in the binary statement here, there is concurrency gen-
eralization from a sample rather than complete evidence of concurrency. E.g.,
traces xa, b, cy, xb, a, cy, xc, a, by are sufficient to reduce to ^pa : 1, b : 1, c : 1q.
As all activities are already present in both children before the application
of the rule, concurrent reduction is α-stable.

FPL.2 Geometric Abstraction. This rule combines fixed loops into a single proba-
bilistic loop. Consider ˆpœm1

n pu1q : w1, ...,œ
mn
n punq : wnq : v where @i, j ď

n ‚ ui –c uj . By definition of ˆ, v “ Σn
1wi. These loops are used as samples
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in a geometric probability distribution.

Probability of exit P “
Σn

1wi
Σn

1miwi

Mean repetitions ρ̄ “
1

P
“
Σn

1miwi
Σn

1wi

Helper function µ averages n loops using a scaled fold with Ψ

ū “ µpœm1
n pu1q : w1,...,œ

mn
n punq : wnq “

œρ̄
p pΓ pΨpΓ pu1,m1q, Ψp..., Γ pun,mnqqq, P q : v

Then ˆ pœm1
n puq : w1,...,œ

mn
n puq : wnq : v

ñfs µpœ
m1
n puq : w1, ...,œ

mn
n puq : wnq.

Geometric abstraction is non-optional deterministic.

FPL.3 Choice Loop roll. A tree is always a loop of length one, so can be incorporated
in a loop by averaging. ˆpx1 : w1,œ

ρ
p px2q : w2q

ñfsœ
ρ̄
p pµpœ

1
p px1 : w1q,œ

ρ
p px2q : w2qqq : w1 ` w2 given x1 –c x2 and where

ρ̄ “ w1`ρw2

w1`w2
. This rule is α-stable.

FPL.4 Fixed Loop of Probability loops. The sum of geometric distributions is a
negative binomial distribution. This rule approximates with a geometric dis-
tribution of the same mean. œm

n pœ
ρ
p pxqq : w

ñfpsœ
ρpm´1q
p pxq : w where m ą 1.

The m “ 1 case is handled by Fixed loop identity CO.1. This rule is in the
non-optional determinism category.

FPL.5 Probability Loop of Fixed loops. œρ
p pœ

m
n pxqq : w ñfpsœ

mρ
p pxq : w.

This rule is in the non-optional determinism category.

FPL.6 Probabilistic Loop Nesting. œρ1
p pœρ2

p pxqq : w ñfpsœ
ρ1ρ2
p pxq : w by the prod-

uct of expectations. This rule is in the non-optional determinism category.

FPL.7 Loop Similarity Normalization. Loops are not similar to their subtrees by –c.
However loops and their children can be usefully consolidated with some loss
of information. Noting that œ1

n puq : w ðñ u : w, we define loop similarity
–L : UA Ø UA:

u1 –Lœρ
p pu2q ô u1 –c u2

u1 –Lœm
n pu2q ô u1 –c u2

Reduction rules using –c each have a Fitness-Preserving Lossy (ñfs) vari-
ation using –L and replacement tree ū.

For rule parameters x1 : w1 –Lœρ
p px2 : w2q : w2

œρ1

p pūq “ µpœ1
p px1 : w1q,œ

ρ
p px2 : w2qq

The consolidated tree ū may replace u1 and u2 in a transformation rule tr
where u1 –L u2 and the resulting rule application still results in tree size
reduction. Loop similarity is non-optional deterministic, but note the rule it
is applied to may have a weaker determinism category, which will become
the category of the final rule.
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Simplifying Lossy Reductions. The last rule category abstracts or summarizes
a PPT, from both a control flow and stochastic perspective, at the expense of
control-flow fitness and precision. Such rules are useful for the management of
noise and for allowing a user to tune the detail of the model for their specific
use case. They are denoted with ñs, with one rule in this category.

SL.1 Choice Pruning. ˆpx : w1, y : w2q : v ñs x : v where w2

v ă ε for some supplied
probability threshold ε. This rule is α-reducing.

5 Incremental Discovery and Optimisations
A simple Toothpaste Miner was introduced in Section 4.2, but can be limited

when applied to streams, very large event logs, or noisy data. Incremental process
model discovery is of interest for streams of events and very large event logs,
e.g. in [18]. Better models may be achieved through other optimizations while
maintaining tractability. Management of noise is another key process mining
challenge [1, p185], which alternative rulesets can address within the overall
Toothpaste Miner framework.

5.1 Incremental Discovery

The Φ∆ algorithm adds a new trace to the existing model and applies reduc-
tion rules: Φ∆ : UA ˆ UA ˆ xUA Ñ UAy Ñ UA.

Φ∆px : w, tt : v, rsq “ ΦM pˆpx : w, tt : vq : w ` v, rsq

Definition 9 (Incremental Toothpaste miner). Given trace t P xAy, rule
sequence rs, existing model UM P UA, and functions gspn and tm per Defini-
tion 7, incremental miner dinc : xAy ˆ xUA Ñ UAy ˆ UA Ñ pG ˆ UAq is:

dincpt, rs, UM q “ pgspnpUM`1q, UM`1q, given UM`1 “ Φ∆pUM , stptq, rsq

dincpt, rs,Hq “ pgspnpstptqq, stptqq

An entire event log L may be presented as a stream to dinc, resulting in
repeated invocations of Φ∆.

Definition 10 (Repeated Incremental Toothpaste Miner).

di : Lˆ xUA Ñ UAy Ñ G
pdipL, rsq, ptq “ dincpt, rs, dipL´ ttu, rsqq, for some t P L

pdiprt1s, rsq, ptq “ dincpt, rs,Hq

5.2 Incremental Complexity

As for other Φ and dtm algorithms, the time complexity of di is dependent
on the size of the tree. For the first trace t1, the size of the initial model is
2|t1| ´ 1. In the worst case, the size of the process model increases over time, so
that subsequent traces ti add 2|ti| nodes each. The time for each run of Φ∆ is
2|ti|

2|R|. The overall worse case size for a log L is then

OmempdipL, rsqq “ Σ
|L|
i“12|ti||R| “ 2|R|Σ

|L|
i“1|ti|

“ Op|R| ¨ ||L||q, by the definition of||L||

An upper bound for time complexity can be found using Lemma 1.
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Lemma 1. For A Ď N, ΣaPAa
2 ď pΣaPAaq

2.

Proof. By induction over |A|; initial case |A| “ 1, for which a2 “ paq2,

Show ΣaPAa
2 ď pΣaPAaq

2 ùñ ΣaPAYtbua
2 ď pΣaPAYtbuaq

2

pΣaPAYtbuaq
2 “ pΣaPAa` bq

2 “ pΣaPAaq
2 ` 2bpΣaPAaq ` b

2

ΣaPAa
2 ď pΣaPAaq

2 ùñ ΣaPAa
2 ` b2 ď pΣaPAaq

2 ` b2 ` 2bpΣaPAaq[\

Then, OtimepdipL, rsqq “ Σ
|L|
i“12|ti|

2|R| “ 2|R|Σ
|L|
i“1|ti|

2 ď 2|R|pΣ
|L|
i“1|ti|q

2 ď

2|R|||L||2, by definition of ||L||. So OtimepdipL, rsqq ď Op||L||2|R|q.
Notably, the time complexity of the incremental algorithm di is quadratic,

rather than the cubic complexity of reducing the entire trace model at once with
dtm. Informally, the model is of a smaller size for more of the execution of the
algorithm, with the time savings compounding. An important design trade-off
remains, as stochastic information loss occurs with most reduction rules, and
some classes of rules cause more information loss than others.

5.3 K Retries

Finding the minimal model with Φppt, rsq would require checking all |rt|!
permutations of reduction rules, so becomes intractable even for relatively small
collections of rules. Rather than using the first full reduction, as in Definition 7,
exploring an alternative K permutations, for small constant K, may yield a
smaller model, without impacting computational complexity.

RK “tr P xUA Ñ UAy | ran r “ ran rsu ^ |RK | “ K

ΦMKppt, rsq “ pt1

where |pt1| “ minptc P N | Dp P UA, rs
1 P RK ^ c “ |Φpp, rs

1q|uq

5.4 Noise and Lossy Rules

As discussed in Section 4.3, reduction rules may be categorized according
to the information loss they cause and their impact on process model quality
criteria. This can impact incremental or full-trace reduction algorithms, and
information losses may also compound with repeated rule applications. This is
most severe for the incremental algorithm dinc, as summary models are local on
the log presented so far, and do not benefit from the context of the full log.

As an example, the Choice Pruning rule SL.1 removes low probability activi-
ties. However, probabilities of activities will fluctuate when few traces have been
processed, and this may remove nodes which are actually well-represented across
a full log. Accordingly, discovery algorithm variant dc takes a cleanup ruleset as
a separate parameter, and performs a penultimate cleanup phase, applying the
cleanup rules only once.

Definition 11 (Toothpaste Miner with Cleanup (TMC)).

Given primary ruleset rs and cleanup ruleset cl,

dc : Lˆ xUA Ñ UAyˆxUA Ñ UAy Ñ G
dcpL, rs, clq “ ΦKpΦpdipL, rsq, clq, rsq is the TMC discovery algorithm

The allocation of rules to main or cleanup rulesets is implementation-dependent.
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Fig. 7: Teleclaims process model.

6 Implementation and Evaluation

A prototype Toothpaste Miner was evaluated against existing stochastic pro-
cess mining techniques using real-world logs. Results show good log conformance
based on Earth-Movers distance [22], in feasible execution times, at the cost of
more complex models.

6.1 Implementation

The prototype has been implemented in Haskell 1, extending other open
source process mining tools [27]. Conversion from XES to a simpler, delimited
text log format is done using Python and pm4py [6]. The implementation uses
binary trees, to exploit the pattern-matching capabilities of Haskell. It maintains
^ and ˆ nodes in lexical order for cheaper comparisons, and to limit traversal
distance for similarity rules such as Choice similarity FP.1. Haskell allows for
concise expression of transformation rules, as in Listing 1.1.

Listing 1.1: Choice similarity FP.1

choiceSim : : (Eq a ) => PRule a
choiceSim ( Node2 Choice x y n)

| x =˜= y = merge x y
choiceSim x = x

The extensions of incremental dis-
covery and K retries are not included
in the prototype. The noise-reducing
choice pruning rule SL.1 is not in-
cluded, and loop similarity FPL.7
is only partially applied. All fixed
loops œn are converted to probabilis-

tic loops œp. Rules in Section 4.3 are otherwise included.

6.2 Evaluation Design

In order to evaluate the potential practical use of our technique, we compare
it to established stochastic discovery techniques in the literature. K-fold cross
validation (k “ 5) was used on three logs, and results compared using stochastic
quality criteria, simplicity and computation time, summarized in Table 3.

We evaluated all stochastic process discovery techniques where, to our knowl-
edge, a public implementation was available. GDT SPN discovery [30], weight

1 Source code is accessible at https://github.com/adamburkegh/toothpaste

https://github.com/adamburkegh/toothpaste
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Table 3: Evaluation Design
Logs Techniques Measures Environment

BPIC 2013 closed Toothpaste (this paper) tEMSC 0.8 [22] Windows 10
Sepsis GDT SPN Discovery [30] Entity count 2.3GHz CPU
Teleclaims [1] walign-inductive [9] Computation time 50 Gb memory

walign-split [9] GHC 8.8.4
wfreq-inductive [9] JDK 1.8.0 222
wfreq-split [9] Python 3.8.3
wpairscale-split [9]
wpairscale-inductive [9]
Trace model

estimator [9] and Inductive Miner [20] implementations are from ProM 6.9 (de-
velopment branch Jan 2021). Stochastic weight estimator combinations were
chosen where previous results [9] had shown meaningful differences. Logs were se-
lected to represent multiple domains. All logs are publicly available 2. BPIC2013
and Sepsis are real-life logs, and Teleclaims is an established dataset [1, p243].

Stochastic quality measures used were Earth Movers’ Distance (tEMSC) [22]
with 0.8 probability mass. Other stochastic measures such as [19] were restricted
to deterministic nets. Entity count is used to measure complexity.

6.3 Results and Discussion

A selection of evaluation results3 are shown in Table 4. The output from the
full Teleclaims log is shown in Figure 7. For some k-fold logs and models, Earth
Movers’ Distance errored due to memory limits, or the calculation was timed out
after 5 hours. No value reflects no result from any k-fold log; otherwise, partial
results from the remaining logs have been used.

The Toothpaste Miner prototype shows a trade-off of improved Earth Movers’
Distance against longer running times and higher model complexity. This is anal-
ogous to the trade-off of fitness and precision against complexity and run-time
often seen with region-based control-flow miners. For reference log Teleclaims, a
human-readable process model was discovered in four seconds.

Some rules did not fire during the evaluations, which suggests the value of
optimizations in Section 5.4, where certain rules are only applied during later
phases of discovery. Real-life logs show sensitivity to the ordering of choice rules
versus log formation rules, with marked model differences depending on rule
sequence. This may reflect the partial implementation of loop similarity FPL.7
in the prototype. For Teleclaims (see Figure 7), some redundancy is apparent
due to prototype limitations in similarity identification for larger sub-trees.

On more challenging real-life logs, the prototype returned within two minutes,
a shorter time than the existing GDT SPN technique. For the BPIC2013 log,
the additional complexity did not achieve a marked quality improvement. For
the Sepsis log, it was able to retain a very similar tEMSC to the trace model

2 BPIC2013 and sepsis logs: https://data.4tu.nl/. Teleclaims: http://www.
processmining.org/event logs and models used in book

3 Full results are available at https://github.com/adamburkegh/toothpaste

https://data.4tu.nl/
http://www.processmining.org/event_logs_and_models_used_in_book
http://www.processmining.org/event_logs_and_models_used_in_book
https://github.com/adamburkegh/toothpaste
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Miner Log Duration (ms) Entities tEMSC 0.8

GDT SPN discovery BPIC2013 closed 203 25 0.387
Toothpaste BPIC2013 closed 3071 315 0.668
Trace BPIC2013 closed 31 2417 0.9334
walign-inductive BPIC2013 closed 194 6 0.6756
walign-split BPIC2013 closed 56 14 0
wfreq-inductive BPIC2013 closed 160 6 0.7346
wfreq-split BPIC2013 closed 18 14 0.6188
wpairscale-inductive BPIC2013 closed 18 6 0.7364
wpairscale-split BPIC2013 closed 15 14 0.8753
GDT SPN discovery Sepsis 10147434 95 -
Toothpaste Sepsis 84551 2992 0.7019
Trace Sepsis 25 5877 0.7029
walign-inductive Sepsis 497 40 -0
walign-split Sepsis 478 51 0.3645
wfreq-inductive Sepsis 178 40 -
wfreq-split Sepsis 25 51 0.5108
wpairscale-inductive Sepsis 34 40 0.6664
wpairscale-split Sepsis 37 51 -
GDT SPN discovery Teleclaims 453 60 -
Toothpaste Teleclaims 3564 121 -
Trace Teleclaims 61 17754 0.9771
walign-inductive Teleclaims 238 28 0.3529
walign-split Teleclaims 137 56 0.0931
wfreq-inductive Teleclaims 203 28 0.5105
wfreq-split Teleclaims 59 56 0.6301
wpairscale-inductive Teleclaims 62 28 0.5143
wpairscale-split Teleclaims 68 56 0.6299

Table 4: Evaluation results.

with a smaller entity footprint, though the final model is not human-readable.
The reductions used may form part of other discovery or conformance strategies,
say as a post-processing step.

7 Conclusion

Stochastic Petri Nets are powerful modelling tools with wide applicability.
Automatically discovered stochastic process models, in turn, can help under-
stand and improve organizations. In this paper we presented the Toothpaste
Miner framework for discovering and reasoning about stochastic process models
in the context of process mining. We shared both batch and incremental discov-
ery algorithms, showed they were computationally tractable, and would maintain
determinism in models once such a model was discovered. A classification scheme
relating transformation rules and process mining quality measures was articu-
lated. Lastly we discussed an implementation of the discovery technique, with an
empirical evaluation showing close to trace-model levels of similarity to real-life
logs, with significantly less required model entities.

Future work in this area may investigate algorithms guaranteed to output
deterministic stochastic models, simpler process models with better human-
readability, and solutions where the choice of ruleset allows for constraining
solutions by particular quality parameters. Other extensions could support ad-
ditional statistical distributions and timed transitions.
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