Trace Probability Calculation on
Probabilistic Process Trees

Adam T. Burke![0000—-0003—4407=2199] " Gapder J.J.
[0000-0002-5201-7125] 3104 Moe T. Wynn ! [0000-0002-7205-8821]

Leemans?
! Queensland University of Technology, Australia {at.burke,m.wynn}@qut.edu.au
2 RWTH Aachen, Germany s.leemans@bpm.rwth-aachen.de

Abstract. An important calculation for many problems in stochastic
process mining is determining the probability of a trace in a given process
model. We show two closed form solutions for this problem, within a pa-
rameterised precision bound, on two data structures: a type of weighted
automata, and a stochastic extension of process trees.

Keywords: stochastic process mining - trace probability - process trees

1 Introduction

The promise of stochastic process models is that they can be used for detailed
and precise descriptions of probability, including the probability that a trace will
occur under a given model, or, the TRACE-PROB problem [9].

This paper provides solutions to TRACE-PROB on stochastic versions of two
data structures, given an approximation bound. The first is a form of stochastic
finite automata [11]. The second is a type of stochastic process tree [2]. Though
solutions exist for TRACE-PROB on other types of process model, process trees
are a heavily used data structure in process mining, most famously in the In-
ductive Miner [8]. Precise approximation bounds and calculation reuse are both
useful properties for calculating entire stochastic languages, as in stochastic pro-
cess quality metrics, and potentially within discovery algorithms themselves.
Other solutions to TRACE-PROB [9, 12, 3] rely on other process representations
such as Petri nets. Another recent solution on process trees [5] chooses a rep-
resentation that limits straightforward translation to stochastic Petri nets; this
paper retains translation at the cost of a more complicated calculation.

Below, we introduce formal preliminaries in Section 2. We define Weighted
Stochastic Finite Automata (WSFA) and use them as a formal grounding for
Probabilistic Process Trees (PPTs) in Section 3. Sections 4 and 5 show trace
probability calculations on WSFAs and PPTs respectively. Section 6 discusses
the result and related work. Section 7 concludes. An extended treatment of this
paper, with more properties and special cases, is also available [1, Ch. 5].

2 A.T. Burke et al.

2 Preliminaries

In this paper, quantifier variables are separated from their predicates with =, e.g.,
Vo € Nux > 1. A finite sequence over set X of length n is a mapping o € {1..n} —
X and denoted by o = {ay,as, ...,a,y € X* where Vi m a; = o[i]. Concatenation
operator + appends one sequence to another such that a1, ..., a,y+<{b1, ..., by) =
(a1, ...@p, b1, ...; b). We also use slice ([...1...]) and length |o| operations. o[i}j]
is a slice from indexes 7 to j inclusive, e.g., {a, b, ¢, d)[213] = (b, ¢).

Following process mining conventions, we consider a universe of activities
that can be performed, the set A. Given a set of activities for some process
A € A, traces are sequences of which activities are performed for a particular
case, o € A*. Structural elements of a process model which do not correspond
to a recorded activity are silent, and represented by 7.

3 Process Trees as Weighted Automata

3.1 Weighted Automata

Stochastic Finite Automata [11], also called Probabilistic Finite Automata [11,
4], are a well-studied formalism consisting of states, and transitions between
them, governed by a probability function with static odds. We make use of a
particular class of SFAs where probabilities are derived from weights on arcs,
and there is a single terminal state. Our definition builds on the literature on
common semantics for stochastic models [4].

Definition 1 (Weighted Stochastic Finite Automata). 4 Weighted Stochas-
tic Finite Automaton (WSFA) is a five-tuple (S, Act,—, so, Sy,), where

— S is a non-empty, finite set of states,

— Act is the activities performed by the automata, Act < A v {7}

— —c S x Act x S — RY is a weight function,

— GS c SxActxS — [0,1] is a transition function, from one state to another,
generating a symbol, at a given probability,

— GS fully connects the states in S,

— GS(s1,2,82) = W = (s1,,82) = w
where Wr =3 o yedct < (s1,y, s3) where — is defined,

— so € S is the initial state, and has no mecoming arcs

— Sw €S is the final state, and a deadlock state, with no outgoing arcs.

For notational convenience, < (s1,x, s2) = w is written as s; gl $o. The set of
all WSFAs is WS. The sequence of symbols generated by proceeding from the
initial state form a path. Traces generated by the model are finite sequences of
activities on paths which include the final state.

81 = 89 can also be used to indicate an instance member of the transition

set. Figure la shows a simple example WSFA, FE,4ive, with a choice between

. . 1k[7 drive[3 . .
activities walk and drive. —= {sg wa;»[] Sw, S0 mg[! Sw}, meaning there is a
7

15 chance of walking and a % chance of driving.

Trace Probability Calculation on Probabilistic Process Trees 3

3.2 Operations on Weighted Automata

walk[7]

oC__p

drive[3]

(a) Etdrive, a union (u1).

train[8]

(b) Eitrain- (¢) Two trips executed in a race, Fidrive || Ettrain.

Fig. 1: WSFA travel examples.

We define concatenation, union and race operators on weighted automata.
We follow the convention that states in operand automata are disjoint [10], as
it is straightforward to construct a copy function to ensure it.

Concatenation (+) chains two automata together.

Definition 2 (WSFA concatenation). Two automatons execute serially. Let
E1 = (SlaA17H1;81‘0781‘w) and E2 =S (SQ,AQ,‘—)Q,SQ,O,SQ,W) be WSFAs. Fur-
ther let Ey and Es be WSFA already made disjoint through copying if necessary.
Then E1 + Ey = (ST, A™ ™ sit sih), with:

w

SH =51 U S U {(51.052.0) }\{51.0, 2.0}

A" =410 A and sit =s10 and s = say,
0 w

1= 1 U =2 U{Sl x&] (Sl.w,szo) \ S1 xg]l Sl.w}

U {(S1.05 52.0) dl, | s2.0 €yl sa\{s Ayl o | s =820VS =510}

The disjointness condition ensures that no states are shared between operands in
operations like F + E. A new shared state, (1., S2.0), replaces the final state of
the left operand and the initial state of the right operand. WSFA concatenation
is associative, allowing extension to a multi-child operator by composition.

A weighted disjoint union operator u allows exactly one of its operands to
completely execute. It constructs a new automaton that may behave as either
of its component WSFAs, with a probability determined by the relative weights
of the existing arcs.

Definition 3 (WSFA wunion). Let Fy = (S1,41,1,81.0,81.0) and Ey =
(So, A, <9, 82,0, 82.,) be WSFAs already made disjoint through copying. Then

4 A.T. Burke et al.

EyuFEy = (S, A, " 85, sY), with:

w
St =5 uSu {(81.0, 52.0), (Sl.w,SQ.w)}\{Sl.o,82.0,31.w752.w}
A=A 0 Ay and sy = (s1.0,820) and S, = (S1.w,S2.0)

<y

z[w] z[w] z[w]
=1 U =9 U{(51.0,52.0) = 8| S1.0 =15V S20 25}

z[w] z[w] z[w]
U{s 'S (S1w,520) | 8 71 810 V 820 2 S2.0)
z[w]
\s = s | s€ {510,820} V5 €{s1.0,520}}
As a gloss, the operator merges the initial and final states of the original au-
tomata, which establishes a weighted choice over which automata to execute.
In a weighted race, represented by ||, two automatons progress in parallel.
At each step, the child automaton to progress next is determined by a weighted
choice between arcs. The result is a Cartesian product of possible states.

Definition 4 (WSFA race). Let Ey = (S1, A1, 1, 81.0, S1.w) and Ey = (S2, Aa, <9
,82.0,82.) be WSFAs already made disjoint through copying. Then Ei || By =
(S|‘7A‘|,‘—>|‘,SQ,SL|,), with:

Sl = {(s1,52) | 51 € S1 A 52 € S}

Al = A, U Ay and s!)l = (81.0,82.0) and sJ) = ($1.0552.0)

ol = (Sl.y752.y) gj‘[—ui] (51.2752.y) | Sl.y wﬁu’]l Sl.z}

U {(51.y552.y) &y (51.y,52.2) | S2.y &, 52.2}

In a race between WSFASs, there is no “communication" between states in the
sense used by process algebras (synchronous shared events). WSFA concatena-
tion, union and race relations are associative, allowing extension to multi-child
operators by composition. Union and race are also commutative.

Figure 1c shows the automata for two trips conducted in a race (say between
two travellers). A second traveller takes the train:

. train|8]
Ettrain = ({0, 8w, {train}, {so =" su}, 50, 5w)
The resulting WSFA Eigrive || Ettrain simulates both automata executing at
once, with each transition progressing one automaton or the other.

3.3 Probabilistic Process Trees

Probabilistic Process Trees [2] can be defined using stochastic finite automata,
where probabilities are derived from weights on each node.

Definition 5 (Probabilistic Process Trees (PPTs)). Let z:w be a node,
where w € RT is a weight and x the remainder. The universe of PPTs is PPT),
recursively and exhaustively defined as:

Trace Probability Calculation on Probabilistic Process Trees 5

A single activity. For a € A, a:w € PPT.

A silent activity, represented by the constant 7. Note 1 ¢ A A T:w € PPT.
A unary operator ®,. Given u € PPT, then @ (u):w € PPT.

An n-ary operator @, over one or more child trees. Givenm = 1, uy, ..., Uy, €

PPT, then @, (u1, ...,):w € PPT.

B oo~

The PPT operators are @ = {—, A, X, Oy, Op}: sequence, concurrency, choice,
a fixed loop, and a probabilistic loop. These are related to control-flow process
tree operators [8], but include weight semantics. These semantics are described
by an equivalent WSFA for each node, which recursively defines the semantics
function wa : PPT — WS.

Leaf nodes. wa(z: w) = ({s0, sw}, {2}, {s0] Sw}, S0, 8w) for z € A v {7}
Sequence. wa(—(z1: w, x9: w): w) = wa(zy: wy) H wa(za: ws)
V—(r1:wy, To:wa):wewy = wy = w

Choice. wa(x (z1: wy, x2: wy): w) = wa(xi: wy) uwa(ze: ws)
=m
V x(21:wy, To:we):wmw = Z w;
i=1

Concurrency. Wa(A(Z1: W1, .oy Ty Wy): w) = (SN, AN, > 80, Sw)
where (Sy, Ar, —r, 810, Srw) = T1: w1 || oo || Tt Wi
Sh =85,u{sp,su} and A" =A, v {r}
A 7[w] 7[w]
=" = > U{s0 > 5.0, Srw > Sw)

=m
VA(Z1: W1, ey Tyt Wi) mWw = 2 w;

Fixed loops. On'(u):w = —(u, ... m times ...):w
VO (x:wy): wg mwy = ws
Probabilistic loops. wa(Op (z:w):w) = (S, AL, =L, S0, Sw)
where wa(z: w) = (S1, A1, 1, $1.0, S1.0)
Sp =51 U {s0,8.}\{s1.0} and Ap = A;u{r}

[%]
—L = {80 Tg] 81.0} Y {81.0 T‘—p’ Sw}

v (p—1)
p

z[v] z[v']
U{s11 < s12| 811 1812 A 812 # Sl AV =

}

z[v] z[v'] v - (p — 1)
U{si1 = s10] 811 =1 S1w AU = T}

This concludes Definition 5, formally describing PPTs. Figure 2 shows a PPT
modelling a realistic example, and its WSFA equivalent, which describes both
variations and probabilities in a simple insurance claim process.

6 A.T. Burke et al.

advise: 117.5

close[248] 7[117.5]

—:483

approve[52]

x:483 A:483 reject[431]

SN /N e

approve: 52 reject: 431 close: 248 %:235

Jp*

4

advise: 235 advise: 117.5

Fig. 2: Detail of a claims process as a Probabilistic Process Tree (PPT) and the
equivalent WSFA.

4 Trace Probability For Weighted Stochastic Finite
Automata

Weighted Stochastic Finite Automata (WSFAs) are built around probabilities
for transitioning between states, so have a trace probability calculation implicit
in their design. However, WSFA, like many automata, have no special treatment
for silence. 7 labels are treated as just another symbol. The presence of silent
loops, as in the example in Figure 3, make the number of paths potentially
infinite. This is similar to the problem of establishing the stochastic language
for SLPNs with silent transitions and loops [7]. A naive solution ignoring silent
loops is straightforward [1]; below is a solution which accommodates silent loops
within an approximation bound.

To handle silent loops we introduce 7., a total function which returns the
trace probability for a given state accurate to an approximation bound.

Tste: A¥xWS x S x (0,1] x [0,1] x P(S) — [0,1]
where S, A are sets of states and activities for the input WSFA
Let E = (S,Au {7}, =, 50, Sw)
Inputs: trace o, WSFA FE, state s, approximation bound €, cumulative probability
p, and visited states seen

1 1
Tste(Ca) + 0,E, s,€,p, seen) = 7210'77’(1615 + —Ew-m— yifp>e
wr T wT o
mwste({a) + 0, E, s,€,p, seen) = — » w-7act , if p <e

Tste(Oy E, Sw, €, D, sSeen) = 1 ; expected termination
1 w
Tse (O, B, 8,€,p, seen) = — Zw st (O, E, 8, € Y seen U {s})
wr T, wr

if p>eands+#s,
7ste (O, E, 8,€,p,8een) = 0, if p < e and s # s, ; terminate repeated path

Trace Probability Calculation on Probabilistic Process Trees 7

where T, = {s g s'} are activity arcs, T, = {s ol g } are silent arcs

wT=2w

x| w
s L>]s’

mact = mgc(0, E, 8, €, w, seen U {s})
wr

T = mse((ay + 0, E, s, €, DU seen U {s})
wr

, {e where s € seen ; retain threshold for repeated state
6 =
w-

o otherwise; scale down for new state

Given an input state, w4 looks at all the
transitions from that state. For those that
match the head of the input trace, it takes
the chance of that transition multiplied by the 7[1] 7[1]
probability of the suffix subtrace. For those a[2] b[3]
that are silent, it takes the chance of those O 7 O
multiplied by the entire input trace. For the Fig.3: Example WSFA with
empty trace, if the WSFA is at the terminal ot 100D, Erioop-
state, it’s a match. If it is not, only silent tran-
sitions can still result in a match, and any other symbol terminates the recursion.
Improbable paths involving silence are treated as probability zero. To achieve
this, the function keeps track of the visited states in the parameter seen, and the
cumulative trace probability. If visiting a new state, the suppression threshold,
€, is scaled down, so that the overall probability error will be within the orig-
inal threshold. If visiting a previously seen state, the suppression threshold is
unchanged. So in a loop involving silence, the current probability will monoton-
ically reduce, while the suppression threshold will not, eventually terminating
the calculation. Overall trace probability function . is then:

ﬂ-we(o-7 (Sa ACta —, 50, Sw)7 6) = ﬂ-ste(0-7 (Sa ACta —, 50, Sw), 50, €, 1a @)

An example probability calculation uses the WSFA E.,,,, in Figure 3.

path {a,b) path {a,r,7,7,7,b)

1 2 2 2 1 2 2 1 1 2

we ?ba wey T~) = == — . = - = —_— e e — . =
Twellab) e 15) = 573 f 57373 5737373

| |
path {a,7,7,b)
2 1 1 2

23373
path {a,7,7,7,7,7,b) and thereafter
22 226
BT AT
As E;00p supports only one valid trace, we can see that the cumulative sum
should be equal to 1, but is instead approximated by %, with an error of %,
within the bound of 5.

8 A.T. Burke et al.

5 Trace Probability on Probabilistic Process Trees

Using the example model in Figure 2, u.qim, we might ask the probability that
claimants have to be advised of a successful claim outcome exactly once. Using
the techniques in this section it can be shown this is:

7. ((approve, close, advise), tciqim, 0.01) = 0.021

This section presents a bounded approximation for TRACE-PROB on PPTs
using terminating recursive function .

Definition 6 (Trace Probability and Bound Approximation for PPTs).
Let A € A be the activities for a given PPT.
T A* X PPT x (0,1] - [0,1]

7e(o, u, €) gives the trace probability for trace o on PPT w within error range €,
defined by cases.

Leaf Nodes Activity and silent nodes have a trace probability of zero or one.
me({ay,a:w,€) =1 Te(O, T wye) =1
otherwise, 7 (o, 2: w,€) = 0 where z € A U {7}

Choice The choice operator x reflects a weighted sum of subtree probabilities.
m
w; - €

—)

(0, X (X1 W, ey Ty Wi) W, €) = w—ZwZ e (o, xi wy,
T

m
where wp = 2 w;
i

Concurrency The state space explosion described by concurrency A requires
calculation at the level of weighted automata.
(o, AMug,ug, ...)i w, €) = Tye(o, wa(A(ug, ug, ...): w, €)

Sequences Trace probability for sequences — first evaluates the empty trace
probability. Function g then considers each possible non-empty two-way split
of input trace o. The function takes a trace, a sequence index, and a PPT model
as parameters. This also applies to fixed loops O,.
mg: A* x N x PPT x (0,1] — [0,1]
Function wg splits at index n and recurses
ws(o,n, —(u1,us, ...): w) = 7 (o[1in], u1), €) - we(o[n + 1f|o]], = (ug, us, ...): w, €)
+7ms(o,n+ 1, —>(uy,ug,...):w)
where n < |o|
7s(o, |o|, = (ur,ug,...):w) = we(o,u1) - (O, > (uz, us, ...): w, €) , terminal case
otherwise, mg(o,u) =0
(o, > (ur,ug, ...):w) = (O, u1) - we(o, = (ug, ...): w)

+ 7s(o, 1, —>(uy, us,...): w)

Trace Probability Calculation on Probabilistic Process Trees 9

Fized Loops Fixed loops are treated as sequences.

(o, On (u): w, €) = me(o, = (u, ...m times...): w)
Approximating Loops Including Silence In a probabilistic loop including arbi-
trary silent activities, the trace probability can be approximated within a prob-
ability bound e. Loosely speaking, the loop is “unrolled” until the probability of
any further execution is non-zero but very small. Let mp,; (o, u) give the (possibly
intractable) trace probability for trace o on PPT w.

Execution of a loop i times is the definition of a fixed loop, equivalent to a
sequence — of length 1.

ol 0) = 3% L (22 e

Choose k such that 2 (1)),c <e Let (i) = ;(,0;1) :

i=k
Tt (0, 0f (u):w) = Y7 q(d) - Tppi (0, Of (w): w)
=0
1=00 .
+ Z q(i) - mppe (o, Oy, (u): w) partition at k iterations
i=k+1
1=00 1=00 1=k
2 q(i) = 2 q(i 2 /) expand term for iterations > k
i=k+1 i=0 i=0
-1
Let r = and note by definition p > 0

X1 /p-1\" 1 1 — kel o
Z =r —r by sum of geometric series

P p 1—7r 1—7r
7,.Ichl (P _ 1)k+1
i=00 B IT—r B (p)k
Z q(i) < € by the definition of k and ¢
i=k+1

Since probability bounds apply, 0 < mppe (0, O (u):w) < 1

=00
Replace Z q(#) with € to give the inequality
i=k+1
Z prtgo()w)<ﬂppt(ao Z) - Tppt (0, Oy (u): w) + €

This final inequality puts upper and lower bounds on the 7, function, with
a width of e. Accordingly, an approximation function is

P 7i:k1 '0;1 i i .
me(o, OF ()w€)_;)P(5)WG(G,On(U).w,é)

10 A.T. Burke et al.

The contribution of a subtree approximation range to a trace probability
approximation never increases with inclusion in a larger tree. Consider PPT u
with child us, and trace o with subtrace o,. The trace probability for o and u is
conditional on the behaviour of ug, or 7(o,u) = Pr(c matches u|os matches uy).
As conditional probability multiplies by a value less than one, the probability 7.
and the approximation € are not increased, so the result remains bounded by e.

Exact solutions for empty traces on loops, and for loops of a single leaf
activity, also exist, using properties of the sum of a geometric progression [1].

5.1 Example Trace Probability Calculation

In Figure 4 we have an example PPT with sequence, choice, a probabilistic loop,
and a silent activity. The PPT contains a probabilistic loop including silence, so
the probability must be approximated within a bound.

1):

Te (<a, b>a uloopa

10 = 0fori=0
1-7r€(,012, (x(b:8,7:2):10): 10) 11 4
+—-.—.—fori=1
From parameters, p =2 and ¢ = — 229
10 +1 1 1 4 4f 9
1l 2'2°2°5'5 ' T
So 57 gl—oandhencek=3 +1 111444
- i): 2 2 2 2 5 5 5
€ 1) 9 00?’10 fori:3
i=3
11 : 1y =0
Z = =7 ({by, OF (x (b:8,7:2):10), —) 0312
i:02 i 10

The probability calculation for the concurrency operator is per the WSFA.
Using the example model in Figure 2, consider the probability that an approved
claim is closed before the client is advised, as in the trace
o.1 = {approve, close, advise). Using the the formulae in this section, and an
epsilon of 0.001, probability 7.(c.1,0.001) = 0.021, rounded to three places.
Including cases where the claimant is advised up to five times, the probability
is 0.040, or 4%.

5.2 Complexity

In evaluating computational complexity, we can recognise that the choices taken
by the trace probability calculation form a tree of possible paths we will call
a path tree. This is similar to a prefix tree [6, p492]. In the worst case, where
all of the model is within a concurrent tree, the computational complexity of
path tree navigation is exponential, from the number of combinations of ordered
strings. The time bound is O(n - k - 2") where n is the number of nodes in the
original PPT, k is the loop unrolling approximation bound, and m is the largest
concurrent subtree.

Trace Probability Calculation on Probabilistic Process Trees 11

5:10 Let the size of the path tree model be n;.

/ \/ The sequence and loop calculations consider

5 |o| splits of input 0. The worst case complex-

a:10 - Op: 10 ity bound for the probability calculation is
! then O(|o|? - n¢). The path tree can be con-

x:10 ceptual, or realised as a concrete data struc-

/ \/ ture that can be reused on subsequent calcula-

b:8 72 tions, if the approximation bound is held con-

stant. In this latter case, the memory com-

Fig. 4: Example PPT w,,, with plexity matches the time complexity for the
sequence, choice, probabilistic Worst case.
loop, and silence. Though the worst case bound is poor, the
trace probability calculation is sensitive to
model quality. Simple models reduce cost by reducing n;. High fitness and low-
precision models typically rely on loops for their generality, such as the Petri net
flower model. Precise models may have many process tree nodes, n, where com-
plexity scales linearly, but the worst case stems from large concurrent regions,
which are also often imprecise. The expansive state space will result in a large
k and therefore n;, where a more precise model will not.

6 Discussion and Related Work

Probabilistic Process Trees were introduced for stochastic process model dis-
covery [2] as an extension of process trees [8] allowing translation to weighted
stochastic Petri nets. These have also been used with genetic miners in a labo-
ratory setting [3]. Though Petri nets are not the focus of this paper, their broad
use in process mining motivated the use of a translatable representation.

The trace probability problem, TRACE-PROB, was identified in defining a
stochastic process quality measure based on the Earth movers’ distance [7].
Other solutions to trace probability use linear optimisation [9], sampling on
probabilistic grammars [12], and Petri net playout [3]. A stochastic language is a
mapping from traces to trace probabilities, and is potentially infinite for models
with loops. Many existing stochastic quality metrics rely on the stochastic lan-
guage of a process model as an input (per a recent survey [3]). Practical use of
stochastic languages in calculating metrics then requires substituting some kind
of finite representations. The solutions presented here, by using a fixed approx-
imation bound, give a clear quantitative criteria for excluding traces from these
languages, e.g., when below a probability threshold.

A recent and alternative stochastic extension of process trees [5] associates
nodes with fixed probabilities rather than weights. This deliberately eschews a
direct translation to stochastic forms of Petri nets, while still allowing calcula-
tion of stochastic languages, and discovery of estimated values for the stochastic
attributes of the tree. An approximate trace probability calculation is also in-
cluded, which depends on a fixed maximum loop length, though the possibility
of using a probability bound, as in Sections 4 and 5, is anticipated. The non-local

12 A.T. Burke et al.

probability impacts caused by enabled transitions under concurrency, noted in
Section 5, are also critiqued in [5] as lacking “structural causality”, that is, prob-
ability relationships are not always reflected in model artifacts such as graph
edges. They also note process tree representations can reduce the number of
stochastic parameters to optimise, under an assumption Petri net weights are
treated as a separate parameter. Trace probability on concurrenct subtrees ap-
pears to have exponential complexity in both [5] and the current paper.

7 Conclusion

We have presented closed form solutions for trace probability on Weighted
Stochastic Finite Automata and on Probabilistic Process Trees that work within
a parameterised approximation bound. Extensions of this work can include em-
pirical evaluations of these techniques, both independently and integrated into
algorithms for stochastic discovery and quality metrics.

References

1. Burke, A.: Process mining with labelled stochastic nets. Ph.D. thesis, Queensland
University of Technology (February 2024)

2. Burke, A., Leemans, S.J.J., Wynn, M.T.: Discovering Stochastic Process Models
By Reduction and Abstraction. In: Application and Theory of Petri Nets and
Concurrency. pp. 312-336. Lecture Notes in Computer Science, Springer (2021)

3. Burke, A.T., Leemans, S.J.J., Wynn, M.T., van der Aalst, W.M.P., ter Hofstede,
A.H.M.: A chance for models to show their quality: Stochastic process model-log
dimensions. Information Systems 124, 102382 (Sep 2024)

4. Eisentraut, C., Hermanns, H., Zhang, L.: Concurrency and composition in a
stochastic world. In: CONCUR 2010-Concurrency Theory: 21th International Con-
ference. Proceedings 21. pp. 21-39 (2010)

5. Horvath, A., Ballarini, P., Cry, P.: Probabilistic Process Discovery with Stochastic
Process Trees. In: EAI VALUETOOLS 2024. Milan (2024), arXiv:2504.05765

6. Knuth, D.: The Art of Computer Programming: Volume 3: Sorting and Searching.
Pearson Education (1998)

7. Leemans, S.J.J., van der Aalst, W.M.P., Brockhoff, T., Polyvyanyy, A.: Stochastic
process mining: Earth movers’ stochastic conformance. Information Systems 102,
101724 (Feb 2021)

8. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Scalable process discovery
and conformance checking. Software & Systems Modeling 17(2), 599-631 (2018)

9. Leemans, S.J.J., Maggi, F.M., Montali, M.: Reasoning on Labelled Petri Nets
and Their Dynamics in a Stochastic Setting. In: Business Process Management.
pp. 324-342. Lecture Notes in Computer Science (2022)

10. Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. Nordic
Journal of Computing 2(2), 250-273 (1995)

11. Vidal, E., Thollard, F., de la Higuera, C., Casacuberta, F., Carrasco, R.C.: Proba-
bilistic finite-state machines - part I. IEEE Transactions on Pattern Analysis and
Machine Intelligence 27(7), 1013-1025 (Jul 2005)

12. Watanabe, A., Takahashi, Y., Ikeuchi, H., Matsuda, K.: Grammar-Based Process
Model Representation for Probabilistic Conformance Checking. In: 2022 4th Inter-
national Conference on Process Mining (ICPM). pp. 88-95. IEEE (2022)

