
Trace Probability Calculation on
Probabilistic Process Trees

Adam T. Burke1r0000´0003´4407´2199s, Sander J.J.
Leemans2r0000´0002´5201´7125s, and Moe T. Wynn1r0000´0002´7205´8821s

1 Queensland University of Technology, Australia {at.burke,m.wynn}@qut.edu.au
2 RWTH Aachen, Germany s.leemans@bpm.rwth-aachen.de

Abstract. An important calculation for many problems in stochastic
process mining is determining the probability of a trace in a given process
model. We show two closed form solutions for this problem, within a pa-
rameterised precision bound, on two data structures: a type of weighted
automata, and a stochastic extension of process trees.

Keywords: stochastic process mining · trace probability · process trees

1 Introduction

The promise of stochastic process models is that they can be used for detailed
and precise descriptions of probability, including the probability that a trace will
occur under a given model, or, the Trace-Prob problem [9].

This paper provides solutions to Trace-Prob on stochastic versions of two
data structures, given an approximation bound. The first is a form of stochastic
finite automata [11]. The second is a type of stochastic process tree [2]. Though
solutions exist for Trace-Prob on other types of process model, process trees
are a heavily used data structure in process mining, most famously in the In-
ductive Miner [8]. Precise approximation bounds and calculation reuse are both
useful properties for calculating entire stochastic languages, as in stochastic pro-
cess quality metrics, and potentially within discovery algorithms themselves.
Other solutions to Trace-Prob [9, 12, 3] rely on other process representations
such as Petri nets. Another recent solution on process trees [5] chooses a rep-
resentation that limits straightforward translation to stochastic Petri nets; this
paper retains translation at the cost of a more complicated calculation.

Below, we introduce formal preliminaries in Section 2. We define Weighted
Stochastic Finite Automata (WSFA) and use them as a formal grounding for
Probabilistic Process Trees (PPTs) in Section 3. Sections 4 and 5 show trace
probability calculations on WSFAs and PPTs respectively. Section 6 discusses
the result and related work. Section 7 concludes. An extended treatment of this
paper, with more properties and special cases, is also available [1, Ch. 5].

2 A.T. Burke et al.

2 Preliminaries

In this paper, quantifier variables are separated from their predicates with ‚, e.g.,
@x P N‚x ě 1. A finite sequence over set X of length n is a mapping σ P t1..nu Ñ

X and denoted by σ “ xa1, a2, ..., any P X˚ where @i ‚ ai “ σris. Concatenation
operator + appends one sequence to another such that xa1, ..., any`xb1, ..., bmy “

xa1, ...an, b1, ..., bmy. We also use slice (r...;...s) and length |σ| operations. σri;js

is a slice from indexes i to j inclusive, e.g., xa, b, c, dyr2;3s “ xb, cy.
Following process mining conventions, we consider a universe of activities

that can be performed, the set A. Given a set of activities for some process
A Ď A, traces are sequences of which activities are performed for a particular
case, σ P A˚. Structural elements of a process model which do not correspond
to a recorded activity are silent, and represented by τ .

3 Process Trees as Weighted Automata

3.1 Weighted Automata

Stochastic Finite Automata [11], also called Probabilistic Finite Automata [11,
4], are a well-studied formalism consisting of states, and transitions between
them, governed by a probability function with static odds. We make use of a
particular class of SFAs where probabilities are derived from weights on arcs,
and there is a single terminal state. Our definition builds on the literature on
common semantics for stochastic models [4].

Definition 1 (Weighted Stochastic Finite Automata). A Weighted Stochas-
tic Finite Automaton (WSFA) is a five-tuple pS,Act, ãÑ, s0, sωq, where

– S is a non-empty, finite set of states,
– Act is the activities performed by the automata, Act Ď A Y tτu

– ãÑĂ S ˆ Act ˆ S Ñ R` is a weight function,
– GS Ă SˆActˆS Ñ r0, 1s is a transition function, from one state to another,

generating a symbol, at a given probability,
– GS fully connects the states in S,
– GSps1, x, s2q “ w

WT
” ãÑ ps1, x, s2q “ w

where WT “
ř

s3PS,yPAct ãÑ ps1, y, s3q where ãÑ is defined,
– s0 P S is the initial state, and has no incoming arcs
– sω P S is the final state, and a deadlock state, with no outgoing arcs.

For notational convenience, ãÑ ps1, x, s2q “ w is written as s1
xrws
ãÑ s2. The set of

all WSFAs is WS. The sequence of symbols generated by proceeding from the
initial state form a path. Traces generated by the model are finite sequences of
activities on paths which include the final state.

s1
xrws
ãÑ s2 can also be used to indicate an instance member of the transition

set. Figure 1a shows a simple example WSFA, Etdrive, with a choice between
activities walk and drive. ãÑ“ ts0

walkr7s
ãÑ sω, s0

driver3s
ãÑ sωu, meaning there is a

7
10 chance of walking and a 3

10 chance of driving.

Trace Probability Calculation on Probabilistic Process Trees 3

3.2 Operations on Weighted Automata

walkr7s

driver3s

(a) Etdrive, a union (\).

trainr8s

(b) Ettrain.

walkr7s

driver3s

trainr8s

trainr8s

walkr7s

driver3s

(c) Two trips executed in a race, Etdrive ||Ettrain.

Fig. 1: WSFA travel examples.

We define concatenation, union and race operators on weighted automata.
We follow the convention that states in operand automata are disjoint [10], as
it is straightforward to construct a copy function to ensure it.

Concatenation (`̀) chains two automata together.

Definition 2 (WSFA concatenation). Two automatons execute serially. Let
E1 “ pS1, A1, ãÑ1, s1.0, s1.ωq and E2 “ pS2, A2, ãÑ2, s2.0, s2.ωq be WSFAs. Fur-
ther let E1 and E2 be WSFA already made disjoint through copying if necessary.
Then E1 `̀ E2 “ pS`̀ , A`̀ , ãÑ`̀ , s`̀

0 , s`̀
ω q, with:

S`̀ “ S1 Y S2 Y tps1.ω, s2.0quzts1.ω, s2.0u

A`̀ “ A1 Y A2 and s`̀
0 “ s1.0 and s`̀

ω “ s2.ω

ãÑ`̀ “ ãÑ1 Y ãÑ2 Yts1
xrws
ãÑ ps1.ω, s2.0q | s1

xrws
ãÑ 1 s1.ωu

Y tps1.ω, s2.0q
xrws
ãÑ s2 | s2.0

xrws
ãÑ 2 s2uzts

xrws
ãÑ s1 | s “ s2.0 _ s1 “ s1.ωu

The disjointness condition ensures that no states are shared between operands in
operations like E `̀ E. A new shared state, ps1.ω, s2.0q, replaces the final state of
the left operand and the initial state of the right operand. WSFA concatenation
is associative, allowing extension to a multi-child operator by composition.

A weighted disjoint union operator \ allows exactly one of its operands to
completely execute. It constructs a new automaton that may behave as either
of its component WSFAs, with a probability determined by the relative weights
of the existing arcs.

Definition 3 (WSFA union). Let E1 “ pS1, A1, ãÑ1, s1.0, s1.ωq and E2 “

pS2, A2, ãÑ2, s2.0, s2.ωq be WSFAs already made disjoint through copying. Then

4 A.T. Burke et al.

E1 \E2 “ pS\, A\, ãÑ\, s\
0 , s

\
ω q, with:

S\ “ S1 Y S2 Y tps1.0, s2.0q, ps1.ω, s2.ωquzts1.0, s2.0, s1.ω, s2.ωu

A\ “ A1 Y A2 and s\
0 “ ps1.0, s2.0q and s\

ω “ ps1.ω, s2.ωq

ãÑ\ “ ãÑ1 Y ãÑ2 Ytps1.0, s2.0q
xrws
ãÑ s | s1.0

xrws
ãÑ 1 s _ s2.0

xrws
ãÑ 2 su

Y ts
xrws
ãÑ ps1.ω, s2.ωq | s

xrws
ãÑ 1 s1.ω _ s2.0

xrws
ãÑ 2 s2.ωu

zts
xrws
ãÑ s1 | s P ts1.0, s2.0u _ s1 P ts1.ω, s2.ωuu

As a gloss, the operator merges the initial and final states of the original au-
tomata, which establishes a weighted choice over which automata to execute.

In a weighted race, represented by ||, two automatons progress in parallel.
At each step, the child automaton to progress next is determined by a weighted
choice between arcs. The result is a Cartesian product of possible states.

Definition 4 (WSFA race). Let E1 “ pS1, A1, ãÑ1, s1.0, s1.ωq and E2 “ pS2, A2, ãÑ2

, s2.0, s2.ωq be WSFAs already made disjoint through copying. Then E1 ||E2 “

pS||, A||, ãÑ||, s
||

0 , s
||
ωq, with:

S|| “ tps1, s2q | s1 P S1 ^ s2 P S2u

A|| “ A1 Y A2 and s
||

0 “ ps1.0, s2.0q and s||
ω “ ps1.ω, s2.ωq

ãÑ|| “ tps1.y, s2.yq
xrws
ãÑ ps1.z, s2.yq | s1.y

xrws
ãÑ 1 s1.zu

Y tps1.y, s2.yq
xrws
ãÑ ps1.y, s2.zq | s2.y

xrws
ãÑ 2 s2.zu

In a race between WSFAs, there is no “communication" between states in the
sense used by process algebras (synchronous shared events). WSFA concatena-
tion, union and race relations are associative, allowing extension to multi-child
operators by composition. Union and race are also commutative.

Figure 1c shows the automata for two trips conducted in a race (say between
two travellers). A second traveller takes the train:

Ettrain “ pts0, sω, ttrainu, ts0
trainr8s

ãÑ sωu, s0, sωq

The resulting WSFA Etdrive ||Ettrain simulates both automata executing at
once, with each transition progressing one automaton or the other.

3.3 Probabilistic Process Trees

Probabilistic Process Trees [2] can be defined using stochastic finite automata,
where probabilities are derived from weights on each node.

Definition 5 (Probabilistic Process Trees (PPTs)). Let x:w be a node,
where w P R` is a weight and x the remainder. The universe of PPTs is PPT ,
recursively and exhaustively defined as:

Trace Probability Calculation on Probabilistic Process Trees 5

1. A single activity. For a P A, a:w P PPT .
2. A silent activity, represented by the constant τ . Note τ R A ^ τ :w P PPT .
3. A unary operator ‘1. Given u P PPT , then ‘1puq:w P PPT .
4. An n-ary operator ‘n over one or more child trees. Given m ě 1, u1, ..., um P

PPT , then ‘npu1, ..., umq:w P PPT .

The PPT operators are
À

“ tÑ,^,ˆ,⟳n,⟳pu: sequence, concurrency, choice,
a fixed loop, and a probabilistic loop. These are related to control-flow process
tree operators [8], but include weight semantics. These semantics are described
by an equivalent WSFA for each node, which recursively defines the semantics
function wa : PPT Ñ WS.

Leaf nodes. wapx:wq “ pts0, sωu, txu, ts0
xrws
ãÑ sωu, s0, sωq for x P A Y tτu

Sequence. wapÑpx1:w, x2:wq:wq “ wapx1:w1q `̀ wapx2:w2q

@ Ñpx1:w1, x2:w2q:w ‚ w1 “ w2 “ w

Choice. wapˆpx1:w1, x2:w2q:wq “ wapx1:w1q \wapx2:w2q

@ ˆpx1:w1, x2:w2q:w ‚ w “

i“m
ÿ

i“1

wi

Concurrency. wap^px1:w1, ..., xm:wmq:wq “ pS^, A^, ãÑ^, s0, sωq

where pSr, Ar, ãÑr, sr.0, sr.ωq “ x1:w1 || ... ||xm:wm

S^ “ Sr Y ts0, sωu and A^ “ Ar Y tτu

ãÑ^ “ ãÑr Yts0
τrws
ãÑ sr.0, sr.ω

τrws
ãÑ sωu

@ ^px1:w1, ..., xm:wmq: ‚w “

i“m
ÿ

i“1

wi

Fixed loops. ⟳m
n puq:w ” Ñpu, ... m times ...q:w

@⟳m
n px:w1q:w2 ‚ w1 “ w2

Probabilistic loops. wap⟳ρ
p px:wq:wq “ pSL, AL, ãÑL, s0, sωq

where wapx:wq “ pS1, A1, ãÑ1, s1.0, s1.ωq

SL “ S1 Y ts0, sωuzts1.ωu and AL “ A1 Y tτu

ãÑL “ ts0
τrws
ãÑ s1.0u Y ts1.0

τr w
ρ s

ãÑ sωu

Y ts1.1
xrvs
ãÑ s1.2 | s1.1

xrv1
s

ãÑ 1 s1.2 ^ s1.2 ‰ s1.ω ^ v “
v1 ¨ pρ ´ 1q

ρ
u

Y ts1.1
xrvs
ãÑ s1.0 | s1.1

xrv1
s

ãÑ 1 s1.ω ^ v “
v1 ¨ pρ ´ 1q

ρ
u

This concludes Definition 5, formally describing PPTs. Figure 2 shows a PPT
modelling a realistic example, and its WSFA equivalent, which describes both
variations and probabilities in a simple insurance claim process.

6 A.T. Burke et al.

Ñ: 483

ˆ: 483

approve: 52 reject: 431

^: 483

close: 248 ⟳2
p: 235

advise: 235

approver52s

rejectr431s

τ r483s

closer248s

τ r235s

advise: 117.5

τ r235s

closer248s

advise: 117.5

τ r117.5s

τ r117.5s

closer248s

τ r483s

Fig. 2: Detail of a claims process as a Probabilistic Process Tree (PPT) and the
equivalent WSFA.

4 Trace Probability For Weighted Stochastic Finite
Automata

Weighted Stochastic Finite Automata (WSFAs) are built around probabilities
for transitioning between states, so have a trace probability calculation implicit
in their design. However, WSFA, like many automata, have no special treatment
for silence. τ labels are treated as just another symbol. The presence of silent
loops, as in the example in Figure 3, make the number of paths potentially
infinite. This is similar to the problem of establishing the stochastic language
for SLPNs with silent transitions and loops [7]. A naive solution ignoring silent
loops is straightforward [1]; below is a solution which accommodates silent loops
within an approximation bound.

To handle silent loops we introduce πstϵ, a total function which returns the
trace probability for a given state accurate to an approximation bound.

πstϵ : A
˚ˆWS ˆ S ˆ p0, 1s ˆ r0, 1s ˆ PpSq Ñ r0, 1s

where S,A are sets of states and activities for the input WSFA
Let E “ pS,A Y tτu, ãÑ, s0, sωq

Inputs: trace σ, WSFA E, state s, approximation bound ϵ, cumulative probability
p, and visited states seen

πstϵpxay ` σ,E, s, ϵ, p, seenq “
1

wT

ÿ

Ta

w ¨ πact `
1

wT

ÿ

Tτ

w ¨ πτ , if p ą ϵ

πstϵpxay ` σ,E, s, ϵ, p, seenq “
1

wT

ÿ

Ta

w ¨ πact , if p ď ϵ

πstϵpxy, E, sω, ϵ, p, seenq “ 1 ; expected termination

πstϵpxy, E, s, ϵ, p, seenq “
1

wT

ÿ

Tτ

w ¨ πstϵpxy, E, s1, ϵ1,
pw

wT
, seen Y tsuq

if p ą ϵ and s ‰ sω

πstϵpxy, E, s, ϵ, p, seenq “ 0 , if p ď ϵ and s ‰ sω ; terminate repeated path

Trace Probability Calculation on Probabilistic Process Trees 7

where Ta “ ts
arws
ãÑ s1u are activity arcs, Tτ “ ts

τrws
ãÑ s1u are silent arcs

wT “
ÿ

s
xrws
ãÑ s1

w

πact “ πstϵpσ,E, s1, ϵ1,
pw

wT
, seen Y tsuq

πτ “ πstϵpxay ` σ,E, s1, ϵ1,
pw

wT
, seen Y tsuq

ϵ1 “

#

ϵ where s P seen ; retain threshold for repeated state
w¨ϵ
wT

otherwise; scale down for new state

ar2s

τ r1s τ r1s

br3s

Fig. 3: Example WSFA with
silent loop, Eτloop.

Given an input state, πstϵ looks at all the
transitions from that state. For those that
match the head of the input trace, it takes
the chance of that transition multiplied by the
probability of the suffix subtrace. For those
that are silent, it takes the chance of those
multiplied by the entire input trace. For the
empty trace, if the WSFA is at the terminal
state, it’s a match. If it is not, only silent tran-
sitions can still result in a match, and any other symbol terminates the recursion.
Improbable paths involving silence are treated as probability zero. To achieve
this, the function keeps track of the visited states in the parameter seen, and the
cumulative trace probability. If visiting a new state, the suppression threshold,
ϵ, is scaled down, so that the overall probability error will be within the orig-
inal threshold. If visiting a previously seen state, the suppression threshold is
unchanged. So in a loop involving silence, the current probability will monoton-
ically reduce, while the suppression threshold will not, eventually terminating
the calculation. Overall trace probability function πwϵ is then:

πwϵpσ, pS,Act, ãÑ, s0, sωq, ϵq “ πstϵpσ, pS,Act, ãÑ, s0, sωq, s0, ϵ, 1,Hq

An example probability calculation uses the WSFA Eτloop in Figure 3.

πwϵpxa, by, πwϵ,
1

10
q “

path xa,by

2

2
¨
2

3
`

2

2
¨
1

3
¨
2

3
path xa,τ,τ,by

`

path xa,τ,τ,τ,τ,by

2

2
¨
1

3
¨
1

3
¨
2

3

`
2

2
¨
1

3
¨
1

3
¨ 0 ¨

2

3
path xa,τ,τ,τ,τ,τ,by and thereafter

“
2

3
`

2

9
`

2

27
“

26

27

As Eτloop supports only one valid trace, we can see that the cumulative sum
should be equal to 1, but is instead approximated by 26

27 , with an error of 1
27 ,

within the bound of 1
10 .

8 A.T. Burke et al.

5 Trace Probability on Probabilistic Process Trees

Using the example model in Figure 2, uclaim, we might ask the probability that
claimants have to be advised of a successful claim outcome exactly once. Using
the techniques in this section it can be shown this is:

πϵpxapprove, close, advisey, uclaim, 0.01q “ 0.021

This section presents a bounded approximation for Trace-Prob on PPTs
using terminating recursive function πϵ.

Definition 6 (Trace Probability and Bound Approximation for PPTs).
Let A Ď A be the activities for a given PPT.

πϵ : A
˚ ˆ PPT ˆ p0, 1s Ñ r0, 1s

πϵpσ, u, ϵq gives the trace probability for trace σ on PPT u within error range ϵ,
defined by cases.

Leaf Nodes Activity and silent nodes have a trace probability of zero or one.
πϵpxay, a:w, ϵq “ 1 πϵpxy, τ : w, ϵq “ 1

otherwise, πϵpσ, x : w, ϵq “ 0 where x P A Y tτu

Choice The choice operator ˆ reflects a weighted sum of subtree probabilities.

πϵpσ,ˆpx1:w1, ..., xm:wmq:w, ϵq “
1

wT

m
ÿ

i

wi ¨ πϵpσ, xi:wi,
wi ¨ ϵ

wT
q

where wT “

m
ÿ

i

wi

Concurrency The state space explosion described by concurrency ^ requires
calculation at the level of weighted automata.

πϵpσ,^pu1, u2, ...q:w, ϵq “ πwϵpσ,wap^pu1, u2, ...q:w, ϵq

Sequences Trace probability for sequences Ñ first evaluates the empty trace
probability. Function πS then considers each possible non-empty two-way split
of input trace σ. The function takes a trace, a sequence index, and a PPT model
as parameters. This also applies to fixed loops ⟳n.

πS : A
˚ ˆ N ˆ PPT ˆ p0, 1s Ñ r0, 1s

Function πS splits at index n and recurses
πSpσ, n,Ñpu1, u2, ...q:wq “ πϵpσr1;ns, u1q, ϵq ¨ πϵpσrn ` 1;|σ|s,Ñpu2, u3, ...q:w, ϵq

` πSpσ, n ` 1,Ñpu1, u2, ...q:wq

where n ă |σ|

πSpσ, |σ|,Ñpu1, u2, ...q:wq “ πϵpσ, u1q ¨ πϵpxy,Ñpu2, u3, ...q:w, ϵq , terminal case
otherwise, πSpσ, uq “ 0

πϵpσ,Ñpu1, u2, ...q:wq “ πϵpxy, u1q ¨ πϵpσ,Ñpu2, ...q:wq

` πSpσ, 1,Ñpu1, u2, ...q:wq

Trace Probability Calculation on Probabilistic Process Trees 9

Fixed Loops Fixed loops are treated as sequences.
πϵpσ,⟳

m
n puq:w, ϵq “ πϵpσ,Ñpu, ...m times...q:wq

Approximating Loops Including Silence In a probabilistic loop including arbi-
trary silent activities, the trace probability can be approximated within a prob-
ability bound ϵ. Loosely speaking, the loop is “unrolled” until the probability of
any further execution is non-zero but very small. Let πpptpσ, uq give the (possibly
intractable) trace probability for trace σ on PPT u.

Execution of a loop i times is the definition of a fixed loop, equivalent to a
sequence Ñ of length i.

πpptpσ,⟳
ρ
p puq:wq “

i“8
ÿ

i“0

1

ρ

ˆ

ρ ´ 1

ρ

˙i

πpptpσ,⟳
i
npuq:wq

Choose k such that pρ´1q
k`1

pρqk
ď ϵ. Let qpiq “ 1

ρ

ˆ

ρ´1
ρ

˙i

.

πpptpσ,⟳
ρ
p puq:wq “

i“k
ÿ

i“0

qpiq ¨ πpptpσ,⟳
i
npuq:wq

`

i“8
ÿ

i“k`1

qpiq ¨ πpptpσ,⟳
i
npuq:wq partition at k iterations

i“8
ÿ

i“k`1

qpiq “

i“8
ÿ

i“0

qpiq ´

i“k
ÿ

i“0

qpiq expand term for iterations ą k

Let r “
ρ ´ 1

ρ
and note by definition ρ ą 0

i“8
ÿ

i“k`1

1

ρ

ˆ

ρ ´ 1

ρ

˙i

“ r
1

1 ´ r
´ r

1 ´ rk`1

1 ´ r
by sum of geometric series

“
rk`1

1 ´ r
“

pρ ´ 1qk`1

pρqki“8
ÿ

i“k`1

qpiq ď ϵ by the definition of k and ϵ

Since probability bounds apply, 0 ď πpptpσ,⟳
i
npuq:wq ď 1

Replace
i“8
ÿ

i“k`1

qpiq with ϵ to give the inequality

i“k
ÿ

i“0

qpiq ¨ πpptpσ,⟳
i
npuq:wq ď πpptpσ,⟳

ρ
p puq:wq ď

i“k
ÿ

i“0

qpiq ¨ πpptpσ,⟳
i
npuq:wq ` ϵ

This final inequality puts upper and lower bounds on the πppt function, with
a width of ϵ. Accordingly, an approximation function is

πϵpσ,⟳
ρ
p puq:w, ϵq “

i“k
ÿ

i“0

1

ρ

ˆ

ρ ´ 1

ρ

˙i

πϵpσ,⟳
i
npuq:w, ϵq

10 A.T. Burke et al.

The contribution of a subtree approximation range to a trace probability
approximation never increases with inclusion in a larger tree. Consider PPT u
with child us, and trace σ with subtrace σs. The trace probability for σ and u is
conditional on the behaviour of us, or πpσ, uq “ Prpσ matches u|σs matches usq.
As conditional probability multiplies by a value less than one, the probability πϵ

and the approximation ϵ are not increased, so the result remains bounded by ϵ.
Exact solutions for empty traces on loops, and for loops of a single leaf

activity, also exist, using properties of the sum of a geometric progression [1].

5.1 Example Trace Probability Calculation

In Figure 4 we have an example PPT with sequence, choice, a probabilistic loop,
and a silent activity. The PPT contains a probabilistic loop including silence, so
the probability must be approximated within a bound.

πϵpxa, by, uloop,
1

10
q “

1 ¨ πϵpxby, ⟳2
p pˆpb: 8, τ : 2q: 10q: 10q

From parameters, ρ “2 and ϵ “
1

10

So
1k`1

2k
ď

1

10
and hence k “ 3

πϵpxa, by, uloop,
1

10
q “

i“3
ÿ

i“0

1

2
¨
1

2i
πϵpxby,⟳i

npˆpb: 8, τ : 2q: 10q,
1

10
q

“ 0 for i “ 0

`
1

2
¨
1

2
¨
4

5
for i “ 1

`
1

2
¨
1

2
¨
1

2
¨
4

5
¨
4

5
for i “ 2

`
1

2
¨
1

2
¨
1

2
¨
1

2
¨
4

5
¨
4

5
¨
4

5
for i “ 3

“ 0.312

The probability calculation for the concurrency operator is per the WSFA.
Using the example model in Figure 2, consider the probability that an approved
claim is closed before the client is advised, as in the trace
σe1 “ xapprove, close, advisey. Using the the formulae in this section, and an
epsilon of 0.001, probability πϵpσe1, 0.001q “ 0.021, rounded to three places.
Including cases where the claimant is advised up to five times, the probability
is 0.040, or 4%.

5.2 Complexity

In evaluating computational complexity, we can recognise that the choices taken
by the trace probability calculation form a tree of possible paths we will call
a path tree. This is similar to a prefix tree [6, p492]. In the worst case, where
all of the model is within a concurrent tree, the computational complexity of
path tree navigation is exponential, from the number of combinations of ordered
strings. The time bound is Opn ¨ k ¨ 2mq where n is the number of nodes in the
original PPT, k is the loop unrolling approximation bound, and m is the largest
concurrent subtree.

Trace Probability Calculation on Probabilistic Process Trees 11

Ñ: 10

a: 10 ⟳2
p: 10

ˆ: 10

b: 8 τ : 2

Fig. 4: Example PPT uloop with
sequence, choice, probabilistic
loop, and silence.

Let the size of the path tree model be nt.
The sequence and loop calculations consider
|σ| splits of input σ. The worst case complex-
ity bound for the probability calculation is
then Op|σ|2 ¨ ntq. The path tree can be con-
ceptual, or realised as a concrete data struc-
ture that can be reused on subsequent calcula-
tions, if the approximation bound is held con-
stant. In this latter case, the memory com-
plexity matches the time complexity for the
worst case.

Though the worst case bound is poor, the
trace probability calculation is sensitive to

model quality. Simple models reduce cost by reducing nt. High fitness and low-
precision models typically rely on loops for their generality, such as the Petri net
flower model. Precise models may have many process tree nodes, n, where com-
plexity scales linearly, but the worst case stems from large concurrent regions,
which are also often imprecise. The expansive state space will result in a large
k and therefore nt, where a more precise model will not.

6 Discussion and Related Work

Probabilistic Process Trees were introduced for stochastic process model dis-
covery [2] as an extension of process trees [8] allowing translation to weighted
stochastic Petri nets. These have also been used with genetic miners in a labo-
ratory setting [3]. Though Petri nets are not the focus of this paper, their broad
use in process mining motivated the use of a translatable representation.

The trace probability problem, Trace-Prob, was identified in defining a
stochastic process quality measure based on the Earth movers’ distance [7].
Other solutions to trace probability use linear optimisation [9], sampling on
probabilistic grammars [12], and Petri net playout [3]. A stochastic language is a
mapping from traces to trace probabilities, and is potentially infinite for models
with loops. Many existing stochastic quality metrics rely on the stochastic lan-
guage of a process model as an input (per a recent survey [3]). Practical use of
stochastic languages in calculating metrics then requires substituting some kind
of finite representations. The solutions presented here, by using a fixed approx-
imation bound, give a clear quantitative criteria for excluding traces from these
languages, e.g., when below a probability threshold.

A recent and alternative stochastic extension of process trees [5] associates
nodes with fixed probabilities rather than weights. This deliberately eschews a
direct translation to stochastic forms of Petri nets, while still allowing calcula-
tion of stochastic languages, and discovery of estimated values for the stochastic
attributes of the tree. An approximate trace probability calculation is also in-
cluded, which depends on a fixed maximum loop length, though the possibility
of using a probability bound, as in Sections 4 and 5, is anticipated. The non-local

12 A.T. Burke et al.

probability impacts caused by enabled transitions under concurrency, noted in
Section 5, are also critiqued in [5] as lacking “structural causality”, that is, prob-
ability relationships are not always reflected in model artifacts such as graph
edges. They also note process tree representations can reduce the number of
stochastic parameters to optimise, under an assumption Petri net weights are
treated as a separate parameter. Trace probability on concurrenct subtrees ap-
pears to have exponential complexity in both [5] and the current paper.

7 Conclusion

We have presented closed form solutions for trace probability on Weighted
Stochastic Finite Automata and on Probabilistic Process Trees that work within
a parameterised approximation bound. Extensions of this work can include em-
pirical evaluations of these techniques, both independently and integrated into
algorithms for stochastic discovery and quality metrics.

References
1. Burke, A.: Process mining with labelled stochastic nets. Ph.D. thesis, Queensland

University of Technology (February 2024)
2. Burke, A., Leemans, S.J.J., Wynn, M.T.: Discovering Stochastic Process Models

By Reduction and Abstraction. In: Application and Theory of Petri Nets and
Concurrency. pp. 312–336. Lecture Notes in Computer Science, Springer (2021)

3. Burke, A.T., Leemans, S.J.J., Wynn, M.T., van der Aalst, W.M.P., ter Hofstede,
A.H.M.: A chance for models to show their quality: Stochastic process model-log
dimensions. Information Systems 124, 102382 (Sep 2024)

4. Eisentraut, C., Hermanns, H., Zhang, L.: Concurrency and composition in a
stochastic world. In: CONCUR 2010-Concurrency Theory: 21th International Con-
ference. Proceedings 21. pp. 21–39 (2010)

5. Horváth, A., Ballarini, P., Cry, P.: Probabilistic Process Discovery with Stochastic
Process Trees. In: EAI VALUETOOLS 2024. Milan (2024), arXiv:2504.05765

6. Knuth, D.: The Art of Computer Programming: Volume 3: Sorting and Searching.
Pearson Education (1998)

7. Leemans, S.J.J., van der Aalst, W.M.P., Brockhoff, T., Polyvyanyy, A.: Stochastic
process mining: Earth movers’ stochastic conformance. Information Systems 102,
101724 (Feb 2021)

8. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Scalable process discovery
and conformance checking. Software & Systems Modeling 17(2), 599–631 (2018)

9. Leemans, S.J.J., Maggi, F.M., Montali, M.: Reasoning on Labelled Petri Nets
and Their Dynamics in a Stochastic Setting. In: Business Process Management.
pp. 324–342. Lecture Notes in Computer Science (2022)

10. Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. Nordic
Journal of Computing 2(2), 250–273 (1995)

11. Vidal, E., Thollard, F., de la Higuera, C., Casacuberta, F., Carrasco, R.C.: Proba-
bilistic finite-state machines - part I. IEEE Transactions on Pattern Analysis and
Machine Intelligence 27(7), 1013–1025 (Jul 2005)

12. Watanabe, A., Takahashi, Y., Ikeuchi, H., Matsuda, K.: Grammar-Based Process
Model Representation for Probabilistic Conformance Checking. In: 2022 4th Inter-
national Conference on Process Mining (ICPM). pp. 88–95. IEEE (2022)

