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Abstract

Process models describe the desired or observed behaviour of organisations. In
stochastic process mining, computational analysis of trace data yields process
models which describe process paths and their probability of execution. To
understand the quality of these models, and to compare them, quantitative
quality measures are used.

This research investigates model comparison empirically, using stochastic
process models built from real-life logs. The experimental design collects a large
number of models generated randomly and using process discovery techniques.
Twenty-five different metrics are taken on these models, using both existing
process model metrics and new, exploratory ones. The results are analysed
quantitatively, making particular use of principal component analysis.

Based on this analysis, we suggest three stochastic process model dimensions:
adhesion, relevance and simplicity. We also suggest possible metrics for these
dimensions, and demonstrate their use on example models.

Keywords: stochastic process mining, process conformance, stochastic Petri
nets, adhesion, relevance, simplicity

1. Introduction

It has been said that “the purpose of a system is what it does” [6]; in the
same spirit, much can be learnt about a system’s purpose by how often it does
it. An organisation is a system, and we can understand it through the processes
it follows. A process performed hundreds of times daily can be a good target
for optimisation, and a rare sequence of events may be important to monitor for
legal compliance. In these cases where event frequency is important, to analyse
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such organisational behaviours quantitatively, we need a stochastic model of a
process, that explicitly represents probability. This research is about measuring
and comparing stochastic process models. It draws on, and contributes to,
the discipline of process mining [I], which concerns the automatic discovery of
process models and their further computational analysis.

Process mining uses sequential data recorded as observations of a process in
action. A collection of such sequences, recording many instances of the process
executing, is termed an event log. Logs are the input to discovery algorithms
which output process models: computational models that describe the underly-
ing process. Process discovery is then a form of unsupervised learning. In the
case of stochastic process mining, the models learnt describe not only which se-
quences are possible, but, perhaps indirectly, how probable those sequences are.
Process mining is used across many industries, and there are many commercial
tools [I6] [I8]. These tools all provide frequency information on activities, but
no explicit support for stochastic models. Explicit stochastic process models
have been used in insurance [37, 29] and healthcare [33] to optimise workflows
and to identify risks.

Quality metrics exist to measure the success of models in representing logs,
and support other forms of quantitative comparison. This may be to check
compliance against a target model, or to understand ways an official model
differs from facts on the ground, or change over time. For instance, analysts
at a German hospital used process mining conformance tools to compare the
changes in medical treatment between different waves of COVID-19 [7]. Many
quantitative measures for such models exist.

When they capture only a control-flow perspective, without a stochastic
element, process mining has well-established ideas on how to organise metrics.
They are organised under four quality dimensions: fitness, precision, simplicity
and generalisation [I, p118]. Having four dimensions supports thinking through
design trade-offs in the construction of models, rather than seeking to optimise
a singular metric.

Some equivalent of process quality dimensions for stochastic models would
help understand quality, support process compliance, and make meaningful
model design trade-offs. It is far from clear whether the four control-flow qual-
ity dimensions translate to use on stochastic process models. Existing metrics
may or may not connect to a control-flow dimension, and are often constrained
to subsets of common process model types. More fundamentally, we lack an
understanding of how these quality metrics relate to one another. As our in-
vestigation shows, two metrics that purport to measure the same concept, such
as precision, may give very different measurements for the same log and model.
On the other hand, metrics that supposedly measure different concepts may be
highly correlated.

Accordingly, in this paper, we investigate what dimensions may describe the
quality of stochastic process models. There are no established quality dimensions
for such models, so we use metrics designed for stochastic models as one start-
ing point, as well as established control-flow process mining dimensions. The
mathematical space under consideration is not purely analytical, as the underly-
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ing event logs to which models are compared are real-life empirical data on the
social behaviour of organisations. This suggests using an exploratory quantita-
tive analysis. Our approach was empirical, based on collecting and evaluating
stochastic process models for real-life processes. Experiments generated a col-
lection of thousands of models, using a variety of techniques, and based on event
data from six real-life logs. Metrics collected included those from the literature
and some adapted or designed specifically for this experiment. This empirical
data was analysed for correlation and a principal components analysis (PCA)
performed. Based on this analysis, we propose three stochastic process model
quality dimensions: adhesion, relevance and simplicity. Both the proposed di-
mensions for stochastic process model quality, and the empirical investigation,
are novel.

Figure [I] gives an overview of the research. Stochastic process models are
generated from logs using discovery techniques. These models, together with
the logs, are inputs to quality metric calculations. The dataset of collected
metrics is then analysed quantitatively.

This article extends our earlier conference paper [14], which reported on the
experiment design and an initial round of experiment and quantitative analysis.
This article adds:

e Additional metrics for entropic relevance [3], and measures based on alpha
precision [I7], from recently published research;

e Improvements to the experimental design, particularly metric capture and
choice;

A second cycle of experimental evaluation and analysis;

Candidate metrics based on the three dimensions; and

e Detailed demonstrations of the dimensions and metrics in use on concrete
example models.

We also share the following secondary results:

e A practical, approximate solution for trace probability calculation (TRACE-
PRrOB) [27], allowing an expanded set of supported models for some met-
rics, and mentioned in our previous work as a play-out log generation
technique;

e New detail on the formal properties of this trace probability calculation;

e A genetic miner for the discovery of stochastic process models, Stochastic
Evolutionary Tree Miner (SETM), suitable for laboratory use; and

e A new implementation of the entropic relevance measure [3] applicable
to a broader range of models than those in the original paper or public
implementation.



The remainder of this article proceeds as follows. Formal foundations are
defined in Section [2] and background scholarship is discussed in Section [3] The
experimental design is described in Section [ including metric choice, model
generation, and two cycles of experiments. The results of the experiments are
presented and analysed in Section[5} Quality dimensions, and metrics suggested
by these results, are discussed in Section [f] including applying them to example
models with a range of different qualities. Section [8] concludes.

2. Preliminaries

This section defines process mining concepts and mathematical structures
used throughout this article.

2.1. Logs and Languages

Sequences are shown as (ai,...,a,) and their concatenation operator as
+, for example, (a,b) = (a) + (b). The set of multisets (bags) over type C
is B(C) and real-valued multisets are B+ (C). Real-valued multisets are always
positive-valued in this paper, with values € R™. The count of item x € C in bag
B € B(C) is Blz]. Multiset union and intersection are L and I respectively.
In real-valued multisets, the count of a member is in RT. As an example,
consider real-valued multiset X = [(a)>4, (b,¢)*°]. Then X|[(a)] = 3.4. The -
operator scales all occurrence values by a numeric factor, as in 2-[{a)!, (¢, b)?] =

[(a)?, {c,0)°].

Definition 1 (Activities and Event Logs). Let A be a set of activities in a
process, and A* the possible sequences of those activities. Fach occurrence of
an activity is an event. A trace o € A* is a sequence of activities. FEvent logs
are multisets of traces B(A*).

L is the set of all event logs. |L| is the number of traces in a log L € £, and
[|L|| the number of events. The number of cases matching trace ¢ in log L € £
is L[o].

Definition 2 (Play-out Log). A play-out log [1, p41] L, € BT (A*) is a finite
real-valued multiset of traces.

Real-life event logs have whole-numbered traces, but in our laboratory setup,
fractional trace counts are useful in play-out logs to accommodate some side-
effects of scaling. These are always positive. The set of all play-out logs is
LD L.

Definition 3 (Stochastic Language). A stochastic language © C BT (A*)
for traces over activities A is a real-valued multiset holding probability values
for each trace, and summing to 1.

Vo € ©,0][0] € [0,1]

Z@[a} =1

ceO



Stochastic languages may be infinite, but this experiment design uses finite
approximations derived from play-out logs. The corresponding finite stochastic
language for a play-out log can be found when scaling by the inverse of the
cardinality of the log, ﬁ

2.2. Petri Nets and Other Models

The term Petri net can refer either to a specific formalism or to a family of
related transition structures. We refer to the foundational control-flow structure
as a place-transition net, following [5].

Definition 4 (Place-transition Nets). A place-transition net is a tuple

(P, T, F,My) of places P, transitions T, flow relation F C (P x T) U (T x P)
and initial marking My. Markings are multisets of places M € B(P) indicating
a state of the net.

The flow relation F' represents a directed connection from the first to the
second node. A transition ¢ is enabled under marking M when every incoming
place is marked, or V(p,t) € F,p € M. When enabled, transitions may fire,
changing the state of the net by consuming one token from each incoming place
and producing one token for each outgoing place.

This structure can be extended to model process probabilities, and to sup-
port activity labels.

Definition 5 (Stochastic Labelled Petri Net). An SLPN [29] is a tuple
(P, T, F,My,W,\) such that (P,T,F,My) is a place-transition net. A weight
function W: T — RT assigns each transition a weight. Labelling function
AT — AU{r} then provides a mapping from transitions to a symbol library
of activities A. T is a silent label where T ¢ A.

When transitions T, C T are enabled in a particular marking, a transition

t € T, fires according to the probability given by Zwi(tlzv(t')
t/€Te

of activity labels, without silent label 7, generated by a series of transitions

through the model forms a trace, and the collection of such traces and their

probabilities is the SLPN’s stochastic language. We assume traces to end in

deadlock, where no transitions are enabled.

Figure |2 is an example SLPN describing a commuter travelling to work.
Every trip starts with them walking to the train station. They always take the
train and buy a coffee, but sometimes they buy the coffee from the cafe at their
departure station, before embarking, and sometimes after taking the train, from
a cafe close to their work. When they arrive at work, they may go straight to
their desk to start the day, or they may chat with one or more colleagues. In the
model, at each point where more than one transition is enabled, the probability
is determined by weighted choice. Transitions are annotated with labels and
weights in the diagram, with 7 a silent label. For example, after walking to the
station (walk: 8), the commuter usually takes the train (train: 7) before buying
their coffee (coffee: 1), with a probability of %. The probability of the entire

The sequences
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Figure 2: Example SLPN for a commuter travelling to work, with its stochastic language. The
language has an infinite number of traces due to the presence of the loop. An SLPN without
weights and a label function is a place-transition net.

trace (walk, train, coffee, sit) is 0.18, as shown in the excerpt from the infinite
stochastic language generated by the model.

We name the set of all SLPNs as . SLPNs are a labeled variant of Stochastic
Petri Nets (SPNs) [B] and Generalized SPNs (GSPNs) [5]. SPNs use timed
transitions, where firing happens according to a reverse exponential function.
GSPNs have both immediate transitions, as in SLPNs, and timed transitions,
as in SPNs.

All process models used in this research are either SLPNs, or structures
translatable to SLPNs. A Probabilistic Process Tree (PPT) [12] is a tree of
weighted nodes.

Definition 6 (Probabilistic Process Trees). Let x:w be a node, where x
is the unweighted portion and w € RY a weight. The universe of PPTs over
activity set A is recursively defined as:

1. A single activity. For a € A, a:w € PPT4.
2. A silent activity, represented by the constant T, such that T ¢ ANT :w €
PPTa.
3. An n-ary operator @, over one or more child trees. Given m > 1,
ULy ooy Uy, € PP T4, then &y (U1, .y tpm): w € PPT4. &, € {—, X, A}
o —(z1:w,. ..,y w):w IS a sequence of trees, executed serially.
o X(x1:wW1, ..., Tpiwy):w is a weighted exclusive choice between pro-
cesses.

o A(x1:wi, ..., Tp:wy): describes child processes which execute concur-
rently. The next process to progress is determined by a weighted race.

4. A unary operator ®1. Given u € PPTy, then ®1(u):w € PPT4. @1 €
{On, Op}-

o OM(x:w):w is a fized loop which repeats process x:w m times.



o OF (z: w):w is a probabilistic loop which repeats process x:w zero or
more times, with exit probability %.

PPTs can be translated to SLPNs and are used in multiple ways as part
of the model generation in these experiments. Figure [3|is an example PPT
describing the same commuter travel process as Figure [2| and with the same
stochastic language.Figure [3bshows the automatic translation of the PPT to an
SLPN, including the silent transitions which maintain the block structure. For
example, the concurrent subtree describing taking the train and having a coffee
becomes a block with a race between “train” and “coffee” Petri net transitions.

N

walk:8  A:8 Op:8 7 sit: 8

YR l

train: 7  coffee:1 chat: 8

(a) PPT.

(b) SLPN.

Figure 3: Example PPT for a commuter travelling to work , and its SLPN translation
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2.3. Metrics and Measures

In this work, metrics and measures are particular classes of functions used
to evaluate log and model quality.

Definition 7 (Metrics and Measures). A metric m is a function comparing
models and logs, m: N x LT — R, which returns a real number. A measure p
is a metric with range [0,1], or u: N'x LT — [0,1].

Measures are a subset of metrics with a guaranteed finite range that make
some forms of comparison and analysis simpler. Where a metric or measure does
not return values for all SLPN models (N), we term it delicate. This may be a
formally identified limitation, or a practical observation about the behaviour of
a particular metric implementation. To give some examples from the literature,
Entropic Relevance [3] is a metric reported in bits, which has no upper bound.
Entropy Recall [30], by contrast, is a measure, formally defined in a way that
guarantees a [0, 1] range; it is also a delicate measure, which is defined only for
determinstic models.

Some metrics are designed to work with play-out logs instead of models.



Definition 8 (Play-out Metrics and Measures). A play-out metric is a func-
tion comparing play-out logs and event logs, m: LT x LT — R, and a play-out
measure 7, is a play-out metric with range [0, 1].

3. Related Work

This research builds on other scholarly work on stochastic process mining
and models. This includes the discovery of such models, their quantitative
measurement and comparison (conformance), and the dimensions along which
they may be compared.

3.1. Discovery of Stochastic Process Models

Many control-flow discovery algorithms exist [19]. Stochastic process discov-
ery algorithms are more limited in number, and may directly annotate models
discovered by control-flow techniques [38] [13] 28, [32] or construct stochastic
models directly [36, [12]. Table [1| summarises existing discovery techniques, in-
cluding whether a technique depends on a non-stochastic model from another
miner, the type of model output, whether the output is convertible to an SLPN,
and the existence of a public implementation. For completeness, we include
two techniques published after our experiments were run [28, [32]. Both use
SLPN variants, one with dynamic weights [2§], the second with data-sensitive
guards [32]. Most discovery techniques leverage a control-flow technique as an
initial step, such as the use of Inductive Miner [26] by GDT_SPN discovery [38].
Many of techniques have public implementations. There is a diversity of output
model types, but most of them support conversion to SLPNs. Other formats,
such as the annotated BPMN used by Simod [I5], may potentially support
SLPN conversion with further research beyond the scope of the current paper.

Table 1: Related work on stochastic process discovery.

Technique Miner Model output SLPN Public  Year
dependency conversion  impl.

GDT_SPN Inductive GDT_SPN Yes Yes 2014

discovery [38] miner [26]

Non-classical Bayesian | No Bayesian net No No 2018

net discovery [36] variant

PLTL discovery [31] No ProbDeclare No No 2019

MCMC prefix tree No Prefix automaton  No No 2020

discovery [21]

Simod [15] Split Annotated No Yes 2020
miner [4] BPMN

Weight estimators Yes SLPN Yes Yes 2021

(6 variants) [13]

Toothpaste Miner [12] | No PPT Yes Yes 2021

SLPN-SD Yes SLPN variant Yes Yes 2023

discovery [28]

Data-Based Stochastic | Yes SLPN variant Yes Yes 2023

Discovery [32]




For our experiment, we use existing GSPN and SLPN discovery techniques
with public implementations [38] 13}, [12]. Other recent discovery research has
shown techniques for discovering probability-annotated BPMN models [15],
probabilistic declarative models [31], non-classical probability Bayesian net-
works [36] and Bayesian models for place-transition Petri nets [2I]. The Bayesian
technique [21] also has potential applications for model comparison and new
conformance measures.

The current study builds directly on the analysis of genetically-mined control-
flow models [IT], both in study design, and direct extension of the Evolutionary
Tree Miner code [I0]. That work conducted a qualitative study on classes of
models generated with different genetic miner constraints. In this work, the
dimensions derived through quantitative analysis in Section [6] are applied qual-
itatively in Section The Stochastic Evolutionary Tree Miner (SETM), a
laboratory discovery technique suitable for exploring alternative models, is in-
troduced in Section

8.2. Quality Dimensions

For control-flow process models and process mining, quality measures are
typically considered to be measuring one of four quality dimensions: fitness,
precision, simplicity and generalisation [I1I], [I, p118]. Fitness measures indi-
cate how well the model can reproduce the behaviour of the log. Precision
measures how much of the model is used to reproduce log behaviour. A model
may describe not just all traces in the log, but many other traces besides: such
a model has high fitness but low precision. The simplicity dimension considers
simpler models as higher quality, in both an application of Ockham’s Razor [39]
and a recognition that simpler models are easier to understand [35]. Generalisa-
tion measures whether the model is applicable to more than the current sample
(in process mining, a specific event log). In contrast to approaches in statistical
learning where metrics aspire to represent overall model quality [41], in process
mining, model quality is usually presented as a way to make design trade-offs
against four quality criteria which are inherently in tension.

Though many studies investigate particular techniques quantitatively, quan-
titative experiments on the basis for quality dimensions are rarer. There is
at least one quantitative study of the relationship between control-flow quality
dimensions [22]. This used a collection of quality measures on models from
a variety of control-flow discovery techniques. Factor analysis on the results
found fitness and precision components with a clear correspondence to exist-
ing measures. An established consensus on what control-flow dimensions were
meaningful preceded the experiment, and the empirical components supported
those concepts. For the stochastic process context, there are no pre-known
dimensions, so this study has a more exploratory character.

8.8. Conformance of Stochastic Process Models

Stochastic conformance metrics are those which specifically take stochastic
process models as input. We make use of most of the metrics surveyed be-
low in Section [41] either directly, or by introducing alternatives inspired by

10



them (defined formally in [Appendix Al). Existing metrics in the literature often

consider probability mass or the probability of particular traces as parameters
in metric calculation. Table [2] summarises existing metrics, including whether
their design is based on a control-flow dimension, restrictions on model inputs
from the full set of SLPN models, and whether there is a public implementation.
There are a small number of metrics, all a product of research from the last four
years. There is no metric for the control-flow Generalisation dimension, and
a third of the models have no control-flow dimension analogue. Most metrics
have restrictions on which models they can be applied to. Three apply only to
SDFA-equivalent models. The set of models for which the Earth-Movers’ Dis-
tance measure (EM) [25] is not practical has been noted, but is not a recognised
formal class of models. Public implementations are available for most, but not
all, of the published metrics.

Table 2: Related work on stochastic process conformance.

Technique Related SLPN Public impl.  Year
Control-flow  restriction
dimension (delicate)
Earth-movers’ distance [25] No Some Yes 2019
Entropy projection precision [30] Precision SDFA only  Yes 2020
Entropy projection recall [30] Fitness SDFA only Yes 2020
Entropic behavioural simplicity [24] | Simplicity No No 2020
Alpha precision [17] Precision No No 2022
Entropic relevance [3] No SDFA only  Yes 2020

Calculating the probability of a particular trace through a process model is
a non-trivial algorithmic problem, TRACE-PROB [27]. Though solutions now
exist, efficient approaches for broad classes of models are still an active research
challenge. Two recent approaches use firstly, linear programming [27] and
secondly, an expectation-minimisation (EM) algorithm on Probabilistic Context
Free Grammar trees [42]. In Section we show an alternative solution which
uses SLPN model play-out - a variant of the Petri net token game [Il, p41] - to
give the trace probability for all traces in a model beyond a given probability
threshold. The result is represented as a play-out log.

The Earth-Movers’ Distance measure (EM) [25] combines the well-known
concepts of Levenshtein string edit cost - in this case in comparing traces - with
the Earth-Movers’ distance over the possible traces of model and log. As the
set of possible model traces can be infinite, this includes a truncated measure
using a specific fraction of the probability mass, for tractability. This theoret-
ical constraint was seen in practice on some models built by existing discovery
techniques from real-life logs.

Entropy has also been used for model quality measurement. In projection-
based precision and recall [30], Stochastic Deterministic Finite Automata (SD-
FAs) are constructed for both log and model. New SDFAs can be computed
from a projection of the log over the model, and vice versa. Entropy ratios
then provide measures for precision (Hp) and recall/fitness (Hpg), both used
in this study. We also employ measures inspired by entropy projection, but

11



Table 3: Event logs

Log Traces | Variants | |A| | Domain

BPIC 2013 closed 1487 183 4 | Issue tracking

BPIC 2013 incidents 7554 1511 3 | Incident tracking
BPIC 2018 control 43808 59 7 | EU Agriculture policy
BPIC 2018 reference | 43802 515 6 | EU Agriculture policy
Road Traffic Fines 150370 231 | 11 | Italian policing

Sepsis 1054 846 | 16 | Hospital diagnosis

not limited to SDFAs (Play-out Entropy Fitness and Precision measures HIFT,
HIPT, HIJFT, HJPT). In entropic relevance [3], the process model is considered
as a way of encoding the log. The entropy of the resulting encoding is calcu-
lated using trace probability, accounting for the encoding cost according to a
background cost model. Three defined metrics correspond to three background
cost models: Universal (HRU), Zero Order (HRZ) and Restricted Zero Order
(HRR). In the original work trace probability is calculated for SDFAs only.
In our experiments, we use a trace probability calculation from play-out logs
when calculating these metrics, as seen in Section [{.1] The result is in bits and
so not constrained to a [0, 1] range. Entropy has also been used to formulate
behavioural simplicity measures [24] for control-flow models.

The Alpha Precision measure [I7] uses the stochastic language of the model
and the event log, and inferences about the underlying system that generated
the log. Probability in the (otherwise unknown) underlying system is estimated
using attributes of the log, including the traces, and reasoning from a Dirichlet
distribution. Traces are included in the calculation when their probability in
the underlying system exceeds a parameter called alpha significance. This alpha
significance parameter varies across domains, making the comparison of models
across logs difficult. The Existential Precision metric (XPU) is the alternative
we introduce to allow such comparisons.

In summary, current discovery techniques use a variety of techniques and
output model types, but are somewhat comparable using a common denomina-
tor of SLPNs. Control-flow quality dimensions suggest starting points for the
quality of stochastic models, but translation of the concepts to a stochastic set-
ting is non-obvious, and new concepts may apply. Existing metrics for stochastic
models are inconsistently related to control-flow dimensions, and have restric-
tions on supported model types due to the challenges of calculating stochastic
languages. This landscape provides the challenges and constraints for our ex-
perimental design.

4. Experiment Design

In this section, we introduce the experiment design in more detail, including
components and phases. The experiment aimed to build a dataset of metrics
for quantitative analysis. Figure 4| shows the detailed experiment design.

12
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Figure 4: Experiment design, generating a broad range of models from event logs from different
domains, then applying metrics to them for analysis.
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We started with real-life event log data, covering a number of domains, as
summarised in Table|3] A large number of process models were generated with
these input logs, using random generation and discovery techniques (including
genetic miner SETM). This was designed to obtain a large number of models
of varying quality, and an abundance of metrics for quantitative and qualita-
tive analysis from different perspectives. Measures applicable to all models,
including low-quality ones, are termed exploration measures. Some broad met-
rics applicable to all models (such as the number of edges) were added, and
this set of exploration metrics were calculated for all models to form the ex-
ploration dataset. From laboratory experience, some measures in the literature
only reliably return values on higher-quality models. We designate these deli-
cate measures, and use them only on models generated by established discovery
techniques, the discovery models. Though such models are only a smaller part
of the larger universe of possible models, they are among the most relevant to
process mining in practice. This full set of metrics was collected on the discovery
models, yielding the discovery dataset.

Two full iterations of the experiments were run, with small variations in the
choice of metrics for each cycle. Finally, dimensional analysis was performed on
both datasets.

In detailing the components of the experiment design, we first introduce
the metrics collected. Secondly, we examine the model representations which
make the metrics calculation practicable, stochastic play-out logs, and the tech-
nique used to construct them. Thirdly, we introduce the SETM genetic miner
for model discovery, used to generate a large volume of models across a qual-
ity gradient. Fourthly, we detail the random and discovery model generation
techniques.

4.1. Choice of Metrics

As reviewed in Section [3.3] metrics in stochastic process mining are an ongo-
ing research challenge with an expanding literature. In choosing and designing
the metrics in these experiments, we deliberately covered a number of different
design concepts, based on a detailed study of metrics in the literature. We drew
on the four control-flow quality dimensions of fitness, precision, simplicity and
generalisation, using existing stochastic metrics where possible (e.g., Entropy
Precision (Hp) [25]). To supplement these metrics and to explore a larger qual-
ity space, we constructed stochastic versions of control-flow measures, such as
Play-out Entropy Precision (HIPT) or the small changes to Generalisation mea-
sures by trace floor and trace uniqueness [2]. We also explored the stochastic
quality concepts Earth Movers’ Distance, Probability Mass, and Entropy. The
metrics used in the two experiment cycles are listed in Table |4} This includes
the design concept behind a metric’s inclusion, the abbreviation for it through-
out the article, and which experiments it was used in. Categories correspond to

those in Figure ] Formal definitions for metrics are found in

14



Table 4: Metrics and their design rationale.

Experiment

Abbrv.  Metric Name Design Concept 1 2

Exploration measures

EMT Earth Movers’ Earth Movers’ v v
With Play-out Trace

TOR Trace Overlap Ratio Probability Mass v Vv

T™O Trace Probability Mass Overlap Probability Mass v

ARG Activity Ratio Gower Fitness v v

TRG2 Trace Ratio Gower length 2 Fitness v v

TRG3 Trace Ratio Gower length 3 Fitness v v

TRG4  Trace Ratio Gower length 4 Fitness v v

HIFT Play-out Entropy Fitness v v
Intersection Fitness

HIPT Play-out Entropy Precision v v
Intersection Precision

HJFT Play-out Entropy Fitness v v
Projection Fitness

HJPT Play-out Entropy Precision v v
Projection Precision

XPU Existential Precision Precision v

SSENC  Structural Simplicity Simplicity v v
by entity count [34]

SSEDC  Structural Simplicity Simplicity v v
by edge count [34]

SSS Structural Simplicity Simplicity v v
incl. stochastic ratio

TGF1  Generalisation by Trace Floor (1) [2]  Generalisation v

TGF5  Generalisation by Trace Floor (5) [2]  Generalisation v v

TGF10 Generalisation by Trace Floor (10) [2] Generalisation v

TGDU  Generalisation by trace uniqueness [2] Generalisation v v

Ezxploration metrics

CSS Structural Complexity Simplicity v
incl. stochastic

MEC Model Entity Count Simplicity v

MGC Model Edge Count Simplicity v

HRU Entropic Relevance Entropy v
w. Uniform [3]

HRZ Entropic Relevance Entropy v
w. Zero Order [3]

HRR Entropic Relevance Entropy v
w. Restricted Zero Order [3]

Delicate measures - discovery only

EM Earth Movers truncated 0.8 [25] Earth Movers v v

Hp Entropy Precision [30] Precision v v
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Table 4 — continued from previous page

Experiment
Abbrv.  Metric Name Design Concept 1 2
Hp Entropy Recall [30] Fitness v v
Log metrics
LTC Log Trace Count Log v v
LTE Log Event Count Log v v

In the first experiment cycle, we found that some of these exploratory mea-
sures were very highly correlated. As this is uninformative, and the measures
were therefore excluded from much of the statistical analysis, Trace Overlap
Ratio (TOR), and two Generalisation by Trace Floor measures (TGF1, and
TGF10) were excluded in the second cycle of experiments. In the second ex-
periment cycle, we were able to add new metrics based on new scholarly work,
particularly Alpha Precision [I7] and Entropic Relevance [3]. The Existential
Precision (XPU) measure is based on Alpha Precision.

The Entropic Relevance [3] metrics are originally restricted to SDFAs ac-
cording to their formal definition and in the public implementation. A new
implementation for this work removes this restriction by using stochastic play-
out logs.

Two log metrics were included as controls: Log Trace Count (LTC) and Log
Event Count (LTE).

4.2. Stochastic Language Estimation with Play-out Logs

Play-out logs [1l p41] are an established process mining technique for gener-
ating event log traces based on process models. For place-transition Petri nets,
a standard way of generating play-out logs is by “playing the token game”:
noting the traces generated when the model advances from the initial marking
through subsequent states. Play-out logs in a stochastic setting have an ad-
vantage over those with control-flow models: the stochastic model eliminates
the need for arbitrary choices and assumptions when choosing between enabled
transitions. Often, some assumed probability distribution is used for play-out
logs on control-flow models. Stochastic models, such as SLPNs, already include
explicit probability functions which define behaviour when multiple transitions
are enabled. The play-out log can then substitute for the model when com-
paring other logs or models, allowing measurement of models which otherwise
could not be practically included in the experiment.

By using a finite representation to approximate the possibly infinite stochas-
tic language of the model, a stochastic play-out log eliminates or greatly reduces
the need for multiple samples to represent possible traces Alternatives, such as
random walks, will converge to representative values over many runs, and are
necessary when a distribution is not well known, or when there are effects that
emerge only after iterative calculation. The information in an SLPN allows al-
ternative paths to be calculated in proportion directly when the goal is to obtain
representative proportions of valid traces.
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The stochastic play-out log generator implemented for these experiments is
represented as function spg, which takes an SLPN and returns a play-out log.
This can be thought of as a breadth-first search on possible traces, pruning
improbable traces. To describe it, we use function eb: N x B(P) — P(T'), which
returns all enabled transitions for a net and a marking. Trace marking function
tg: N x B(P) x T — B(P) returns the new marking after a transition fires.
Lastly, function lab gives a transition label as an activity sequence.

lab: N xT — A*
lab((P, T, F, Mo, W, \),t) = () if A(t) = 7 else (A(t))
where t € T

Definition 9 (Stochastic Play-out Generation). Let g be an SLPN model
such that g = (P, T, F, My, W, X). Then sdlg is a play-out log generation func-
tions taking an SLPN (g), a marking (m), a number of traces to be generated
(b), and a mazimum path length (w). Function spg is a specialisation which
starts from the initial marking. Function surplus allocates rounded amounts to
specific traces.

sdlg: N x B(P) x Nx N — L

sdlg(g,m,b,w) = || [0 | o =1lab(g,t) + ou
teeb(n,m)

bW (t
A d = floor ( W( )> + surplus(g,t,m,b)
AT = Sdlg(gatg(n7m7t)7d7w - 1)

Noy er

A f=rlou]

where W, = Z W (t") if eb(g,m) #0 and w > 0

t'€eb(g,m)
sdlg(g,m,b,w) =[()"] if eb(g,m) =0V w =0
Spg(g7 ba WO) :Sdlg(ga MO) b7 WO)

The spg function takes a target size as a trace “budget”, then recursively
splits the budget according to each possible state in a token game, and the
relative weights of enabled transitions. The maximum path length ensures ter-
mination even for models that include potential livelock, or infinite loops. Traces
affected by maximum path lengths are truncated.

Rounding is controlled by the surplus function. The value rounded across
all enabled transitions is the difference between the budget b and the sum of
the weighted natural number allocations to those transitions. The rounding
order is first to silent transitions, then by lexical order of the transition labels,
then to the transition with the least allocation, then arbitrarily. Prioritising
silent transitions favours the representation of loop exit states in the SLPN
translation of PPT models. Least allocation refers to the enabled transition
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which will receive the least trace budget from the weighted allocation. This
favours representation of rarer traces on the margin. In general, the design
intent is for easily reproducible outputs, where variation is limited, and which
discourages the computationally expensive process of sampling over multiple
runs. Instead, if a given granularity is insufficient for a particular use, larger
values for the log size and maximum path length parameters can be used to
achieve more granularity.

As play-out logs can be straightforwardly converted to stochastic lan-
guages, this provides a practical approximation to the TRACE-PROB problem for
SLPNs [27]. A play-out log M, generated without maximum path restrictions,
will include all traces from paths which have a probability exceeding ﬁ Some
models have stochastic languages which fall outside this guarantee, when they
have highly probable traces which exceed the maximum trace length. These
models are rare in practice, and often amenable to inclusion by using a differ-
ent maximum trace length. For example, long traces are mostly due to loop
constructs in an underlying Petri net. In an SLPN which terminates, each it-
eration around the loop will construct new traces of monotonically decreasing
probability. Therefore very long traces produced by loops are often also very
improbable.

The algorithm has a worst-case computational complexity of O(b-wy), where
b is the target log size, and wy is the maximum path length. In many cases, a
large maximum path length (wy >> 0) parameter is desirable to ensure represen-
tative and non-truncated traces. The use of the reachability graph (implicitly,
via the token game) makes the algorithm combinatorial below this ceiling. The
combination of the play-out log size limit and the maximum trace limit make
it highly practical across a variety of models, as observed in this experimental
work. Most of the exploration measures make use of this form of trace probabil-
ity estimation, by using the frequency of traces in play-out logs. This approach
both increased the range of possible models and radically decreased calculation
times.

In the implementation, the play-out log size was set to 1000 traces. The
maximum path length was set to 5000 for the first round of experiments and 500
in the second. Almost all play-out logs experiencing maximum path truncation
were from random models, and on a minority of traces.

4.3. Genetic Miner (SETM)

Genetic algorithms try a broad range of solutions according to a process
loosely inspired by the “survival of the fittest” genetic adaptation of biolog-
ical species to their environment. These algorithms usually start with some
randomly generated potential solutions. The solutions are evaluated according
to a survival function, and the best kept. These are then mutated randomly
according to set rules, and the process is repeated for many iterations, or gen-
erations. When employed for process discovery, these algorithms are termed
genetic miners [10].

A novel genetic miner for discovering stochastic process models, the Stochas-
tic Evolutionary Tree Miner (SETM), was implemented for these experiments.
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It is based on the Evolutionary Tree Miner [10]. The SETM generates random
PPTs for the initial generation of models. Four possible mutations are then
applied: to add a node (including control-flow nodes and silent transitions),
mutate a single node, remove a subtree, or remove useless nodes (specifically
to apply Preserving Compression rules [12]). These mutations also select el-
ements randomly, while preserving valid and consistent tree weights. Models
were exported as SLPNs. SETM is suitable for exploring model alternatives in
a laboratory setting, with the quality of final generation models being far higher
than random models, but not at the same level as those from other discovery
techniques. An example mutation is shown in Figure

Add Node ¢: 3 —:3
— VEURN

/—>:
13 a3 x:3
Iy

a c:3

N

13
\
b: c:

1 b 1

Figure 5: An example of applying an Add Node mutation on a PPT. The activity to add and
the location in the tree are chosen randomly during mutation.

In our experiments, the SETM was run across 1000 generations with a sur-
vival function incorporating all the exploration measures for that cycle, with
equal weight. The model with the highest survival score in each generation was
added to the exploration dataset, generating a spectrum of models of moderate
quality. Any additional exploration metrics were also collected for each model.
The genetic miner yielded results for four of the logs in this experiment; due
to timeouts after forty hours, the two logs with the most activities gave partial
results, and were excluded from the dataset.

4.4. Model Generation

As well as genetic mining, the two other classes of model generation tech-
niques employed were firstly, random generation, and secondly, existing stochas-
tic discovery techniques.

Random models were created by randomly choosing nodes of PPTs. The
random generation included silent, activity and control-flow nodes. Models
larger than the arbitrary cutoffs of a tree depth of 30 or 1000 transitions were
discarded, and substituted for another generated model. Models generated ran-
domly were anticipated to have lower quality.

Models generated by existing stochastic discovery techniques were also in-
cluded, and were anticipated to be of higher quality. Public implementations of
stochastic process discovery techniques for GSPNs created a further 103 mod-
els relating to the selected event logs. This included GDT_SPN discovery [38],
Tootpaste miner [12], and multiple estimation techniques [I3] which add weight
information to control-flow models. For estimation, the input control-flow mod-
els were constructed using established miners Inductive Miner [26], Fodina [9]
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and Split Miner [4], and all combinations of weight estimation techniques [13]
and the three control-flow discovery algorithms were used. State of the art
stochastic discovery techniques yield higher quality models than random mod-
els or SETM, but still yield low-quality models in a number of cases. This meant
the discovery dataset still contained a wide range of metric values.

A total of 9301 models were generated. Metric implementations, metric
reuse, and other experimental scaffolding, were all implemented in Java using
the ProM frameworkﬂ Experiments were run on a Linux clustered data centre
using 50 Gb of RAM.

5. Results

An exploratory quantitative analysis was performed on model metrics from
Experiments 1 and 2. As Experiment 2 is a refinement of Experiment 1, we
foreground Experiment 2 results in this section.

5.1. Quantitative Analysis For Component Identification

We performed analyses of correlations and principal components [23] to de-
termine commonality and orthogonality between metrics that indicated poten-
tial quality dimensions. To weigh the sources of models equally, sources with
less than 1000 models had data points repeated as if resampled. Sample sizes
are quoted without resampling. We used scaled PCA, centring all input param-
eters to a zero mean and scaling to unit variance. This allowed metrics such as
HRU to be included in the analysis, even though they could not be included in
the genetic miner survival function, as their range was not known in advance.

In Experiment 1, some measures were very highly correlated (> 0.99), and
these were excluded in Experiment 2, as indicated in Table We examined
Experiment 2 metric correlation for the exploration and discovery datasets;
exploration metrics are shown in Figure [ Correlation is indicated in blue
and anti-correlation in red, with colour intensity and circle size indicating the
strength of correlation. A number of correlated groups of measures can be
observed in these results, and the metrics are ordered so they are clearer vi-
sually. A number of groups are already related by concept and implementa-
tion: metrics for logs (LTC,LTE), model complexity (MEC,MGC,CSS), Trace
Ratios Gower (TRG2-4), simplicity (SSENC,SSEDC,SSS), and Entropic Rele-
vance (HRZ,HRR,HRU). Some metrics showed high correlations even though
they were included under different concepts. While Trace Overlap Ratio (TOR)
and Earth Movers’” With Play-out Trace (EMT) are included under Probabil-
ity Mass and Earth Movers’ respectively, the Earth Movers’ Distance measure
definition is closely related to probability mass. Play-out Entropy Intersection
Fitness and Precision (HIFT ,HIPT) are correlated, though they are intended
to measure quite distinct control-flow concepts. These measures do share im-
plementation similarities, in that they both use an entropy calculation over a

L. All source code is accessible at https://github.com/adamburkegh/spm_dim
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Figure 6: Correlation between exploration metrics, Experiment 2.

trace projection. More surprising, perhaps, is the group of five partially corre-
lated metrics TRG5-XPU, which includes metrics intended to measure fitness,
precision and generalisation, all together.

It is also interesting to note which metrics are not correlated or are anti-
correlated. Activity Ratio Gower (ARG) is not strongly correlated with any
other metric, including other subtrace ratios (TRG2-4). Metrics for fitness
are not strongly correlated with one another, and similarly for precision and
generalisation. The Entropic Relevance metrics (HRZ,HRR,HRU) show some
anti-correlation with the TRG5-XPU grouping, and with some other tracewise
metrics.

The two log metrics LTC and LTE showed correlations with the trace ratio
measures and the simplicity measures (-0.45 and -0.63 respectively). In these
cases, either the number of traces or events is a parameter to the measure, so
this is to be expected. Correlation between LTC and LTE and other metrics
is low. As these properties were already known, we then excluded the two
log metrics. An Anderson-Darling test for normality showed no variables fit a
normal distribution (p < 0.001), ruling out techniques such as factor analysis
for both experiment cycles.

A scaled Principal Component Analysis (PCA) was then used to examine
the basis for orthogonal components. PCA outputs a change of basis for a
dataset with n measures in which the resulting n dimensions can be ranked by
their maximisation of variance. The result is guaranteed to produce orthogonal
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Figure 7: Scree plot of percent of variance explained by each principal component, sorted in
descending order, on PCA for exploration metrics in Experiment 2.
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Figure 8: Exploration dataset scatterplot against PCA components 1 and 2. Ellipses and
colour distinguish source logs.
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dimensions (in PCA terminology, components), and is often used for dimensional
reduction by choosing the highest-ranked components. It is employed here to
identify potential orthogonal dimensions with an empirical basis. A scree plot
of the variance covered by the components was used to estimate the number
of possible dimensions. Figure [7] shows the scree plot for exploration metrics
in Experiment 2. These three components explain 39.3%, 27.5% and 11.3%
of the variance respectively, and the remaining components explain at most
6% each. Results for the discovery dataset, which includes delicate measures,
were similar, explaining 45.9%, 16.9% and 12.3% respectively; these are also
similar to Experiment 1’s results. The elbow technique and other methods
suggest a fourth useful component may exist. Both experiments showed three
orthogonal components, with a possible fourth. This fourth component was not
clearly identified with an underlying concept, and explained less than 10% of
the variance. We chose, conservatively, to exclude it from further analysis.

We performed robustness tests to examine whether components could be
identified with any element in the experiment setup itself, and for consistency
across data subsets. Specifically, components were compared to log sources and
to model generation sources (i.e. random/SETM/discovery) to check whether
the PCA was simply identifying these input partitions. Classification by log and
by model source varied across PCA components for both experiments. Figure§]
shows one example classification by log across the first two PCA components
for the exploration dataset. Though models from different logs, as represented
by the ellipses, have different quality profiles, they are not straightforwardly
identified with components in either instance. Since this analysis suggests the
components reflect deeper underlying regularities in the dataset, a second round
of analysis, below, breaks these components down further.

5.2. New Metrics Yield New Components

Different components were identified by the two cycles of experiments. Within
experiments, components differed across exploration and discovery datasets, and
the order of influence of the second and third components changed, but similar
metrics were associated with them in both cases. In both experiments, the first
component is associated with the Earth Movers’ Distance (EM) and Trace Gen-
eralisation by floor (TGF) measures. A second component is associated with
Simplicity measures. However, in Experiment 1, the third component has an
association with Entropy Precision and Recall (Hp,HF) and Trace Ratio mea-
sures. In Experiment 2, the Structure Stochastic Complexity (CSS) and on the
discovery dataset, the Entropy Relevance metrics (HR*), are closely associated
with a third component, and not correlated with Entropy Precision and Recall.

To clarify these relationships and seek a more parsimonious description of
the data with fewer input metrics, we performed a second round of analysis.
Metrics that correlated with another at > 0.9 were pruned. When choosing
from a pair of correlated metrics, we prioritised first metrics from published
literature, then metrics that correlated to delicate measures on the discovery
dataset, then conceptually clearer metrics. By conceptual clarity, we refer to a
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Figure 9: PCA biplots for selected metrics on the discovery dataset, comparing three compo-
nents. The approximate orthogonality of the Native Metrics Earth Movers’ Distance (EM),
Simplicity by Edge Count (SSEDC), and Entropic Relevance Zero Order (HRZ) can be ob-
served.

decision about whether to include the complexity metric CSS, or the simplic-
ity metric used as an input to its calculation. Since CSS has a known formal
relationship to simplicity measure SSS, one of these metrics could be excluded.
Examining PCA biplots, the resulting dimensions were more clearly aligned
with named measures, and hence existing concepts, when based on simplicity,
so this was the metric included.There were seven metrics remaining after prun-
ing. The six metrics available on all models were Existential Precision (XPU),
Generalisation by Trace Floor (5) (TGF5), Generalisation by Trace Uniqueness
(TGDU), Entropic Relevance with Zero Order (HRZ), Trace Ratio Gower length
2 (TRG2), and Structural Simplicity by edge count (SSEDC). The seventh is
the Earth Movers’ Distance (EM), which is a delicate measure, and so not prac-
tically available for all models. In choosing these metrics, we evaluated their
correlations on both exploration and discovery datasets. |Figure [9] shows PCA
biplots for the remaining metrics for the discovery dataset in Experiment 2. A
PCA biplot plots input dataset variables as vectors against two selected PCA
components. Combinations of the first three components are shown to give a
sense of the metrics in the three dimensional space constructed by three com-
ponents. For example, The Earth Mover’s Distance is strongly associated with
the first component, labeled Dim1. The six exploration metrics, EM, and the
PCA performed on them across both Experiment 2 datasets, are the immediate
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underlying data for our proposed quality dimensions.

In summary, three PCA components are shown across both experiments
and across exploration and discovery datasets. Two components are similar
across the two experiments; a third differs in composition under the influence of
new metrics. A second analysis, centred on the Experiment 2 metrics, suggests
candidates for the quality dimensions proposed in Section [6]

6. Quality Dimensions

From the experimental results above, we propose three quality dimensions,
which we name Adhesion, Simplicity, and Relevance, and which we characterise
below. To apply these dimensions for quantitative measurement and compar-
ison, we provide three sets of measures, corresponding to two interpretations
of the experiments. In the first view, the experiments and analysis are con-
sidered to have revealed hidden underlying regularities, akin to physical laws,
and corresponding to PCA components, which the combined weighted measures
approximate. We call this view dimensional realism. In the second view, the ex-
periments and analysis are used to reveal which metrics effectively partition the
quality space, by capturing variance and their orthogonality to other metrics.
Those metrics are then used directly, transformed only by scaling, and so this
is termed the native metrics view. Though the problem of choosing synthetic
or direct metrics is not a new one in science, the dimensional realist / native
metrics terminology is, to our knowledge, new, at least as applied to the specific
problem of dimensional choice.

6.1. Three Model-Log Quality Dimensions

Adhesion. To represent how little effort is required to transform one stochastic
language into another, we use the term adhesion. Such a transformation can
involve both modifying which traces the process accepts, and the probability of
those traces. An informal interpretation is how few changes a team needs to
make to adhere to a different way of working.

Relevance. Relevance measures the informational cost of reconstructing the
complete traces from the event log with the model. The dimension name is
directly inspired by the Entropic Relevance metrics [3]. E| This definition also
constrains the concept to a trace level view of the model and log, where com-
pleted cases are considered relevant, but even slightly differing traces are not.

2As Relevance concerns the amount of information shared between log and model, it is
related conceptually to Entropy, the name used for the second dimension in our previous
work [14]. However, as noted in Section the underlying metrics differ significantly.
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Simplicity. Parsimony in models is well-recognized as a virtue in science gen-
erally [39], and a desirable dimension in process models specifically [I, p118].
Simplicity represents the number of explicit syntactic features of the model. En-
coding costs, or the movement of complexity into a notation, are not considered,
but are mitigated in this work by using SLPNs as a common model structure.
Syntactic simplicity, as in this dimension, is also distinct from behavioural sim-
plicity [24], for example where a model with many elements might describe a
process with very limited behaviour. Behavioural simplicity is more associated
with the Relevance dimension.

Example models illustrating these dimensions are examined in Section [6.4]

and in Figures [10] and

(a) Adhesion+ Relevance+ Simplicity+. Covers the bulk of the probability mass and the completed
traces in the log.

(b) Adhesion++ Relevance++ Simplicity mid-range. Near-perfect probability mass and completed
traces, as well as fitness and precision.

(d) Adhesion- Relevance- Simplicity mid-range. Flower Model with event frequencies.

Figure 10: Models exemplifying adhesion and entropy variations relative to log Lp =

[(a,5)%°, (a,b,¢)?, (a,b,c, )", (e, f)'].
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Figure 11: Model exemplifying adhesion and entropy variations relative to logs Ly and L .
This also shows how the quality of a single model will vary when compared to different logs.
Adhesion+ Relevance- Simplicity+. Partial major trace relative to log Lp =
[<av bv ) d7 6)20, <av b>17 <b7 C>17 <Cv d>17 <d7 6>1].

Adhesion mid-range(-) Relevance mid-range(+) Simplicity+. Half log coverage relative to log
LG = [<a7 b7 &) d>507 (67 f7 g>50].

6.2. Dimensional Realist View

In the dimensional realist view, PCA components are taken as the model of
the underlying space. After excluding highly correlated metrics, we use those
remaining as a synthetic estimator for each dimension, which can be used as a
measure for that dimension. To construct this estimator, we start from the
definition of a principal component in PCA.

In a Principal Component Analysis, each element is centred by its mean
and scaled by its standard deviation. Take the metrics m1...mg included in the
analysis, then m; to be the i-th metric, x;, s; to be the corresponding mean and
standard deviation, and Px,; the PCA loading for one of the PCA components.

S1 S1 52 52
Pxi1-mi  Pxa-mg Pz
= + o=
s s Si
1 2 i=1..6 [

This linear equation is reorganised for our specific use case by noting
that the concluding sum is a constant, and renaming the constant factors %

after their corresponding metrics. For example, szlil'ml is replaced by M X x py .-
Definition [10] uses the reorganised formula to define three metrics, one for each
quality dimension.

Definition 10 (Dimensional Realist Metrics).

Xp=MXxpy - XPU+ MXrgps - TGF5+ MXrapy - TGDU
+MXyrz -HRZ + MX71prae - TRG2+ MXssgpc - SSEDC + Kxp

where Kxp = E
i=1...6

and X € {A, R, S} for (A)dhesion Ap, (R)elevance Rp
and (S)implicity Sp, respectively.

Px; - @;

Sq
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The empirically derived factors and constants are summarised in Table
]Min/max values are in Table @ Min/max scaling is applied in Table The
tables show not all factors are of the same importance. For the third dimension,
simplicity, the Px values for the entropic relevance (H RZ) factor is zero at four
digits of significance, excluding it. The values for existential precision X PU are
very small (-0.00113), such that it could also be excluded. The PCA component
for simplicity minimised when input simplicity was highest, so we have reversed
the signs of the factors and constant so that high values indicate higher quality.
The factors show the conceptual limitations of dimensional realism: the explicit
simplicity measure based on edge count SSEDC has a similar contribution to
both Relevance and Simplicity DR dimensions, and the relevance metric HRR
contributes only slightly more to Relevance than Adhesion.

The calculations in Definition yield metrics rather than measures, as
they may range beyond [0, 1], including negative values. Min/max scaling was
applied to achieve a measure in an applied setting, as seen in Table []] They
are derived by noting that five of the six input metrics are already normalised
within a [0,1] range. The remaining input metric, Entropic Relevance Zero
Order (HRZ), is observed in experimental data to have a maximum of 52.55 and
range of 50.68. To calculate scale ranges, we treated HRZ as having range [0, 60],
and calculated overall ranges based on the theoretical extremes of each input
variable. We expect the scaled (measure) versions of DR metrics in Table
to be the most immediately useful to those measuring Adhesion, Relevance and
Simplicity, as they are easier to compare and intuitively understand. Unscaled
factors, constants and min/max values for this study are in Tables [5| and @ to
allow users of the measures to rescale if different extrema are observed in their
applied domain.

Table 5: Dimensional realist factors and constants from exploration metrics.

Metric Adhesion (MA)  Relevance (MR)  Simplicity (MS)
XPU 1.518 -0.693 -0.087
TGF5 1.540 0.358 -0.709
TGDU 1.425 0.579 0.842
HRZ -0.0476 -0.0492 0.000
TRG2 1.090 -3.527 -3.582
SSEDC 0.610 -2.157 2.518
Constant | Adhesion (Kap) Relevance (Krp) Simplicity (Ksp)

3.09 -2.92 0.97

Table 6: Dimensional realist min/max from exploration metrics.

Adhesion Apy;  Relevance Rpys  Simplicity Spas
Minimum -5.94 -6.40 -5.36
Maximum 3.09 3.87 2.38
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Table 7: Dimensional realist factors and constants from exploration metrics, after min/max
scaling.

Metric Adhesion (MA)  Relevance (MR) Simplicity (MS)
XPU 0.168 -0.0675 -0.00113
TGF5 0.170 0.0349 -0.0916
TGDU 0.158 0.05637 0.109
HRZ -0.00526 -0.00479 0.000
TRG2 0.121 -0.344 -0.463
SSEDC 0.0674 -0.210 0.325
Constant | Adhesion (K4p) Relevance (Kgrp) Simplicity (Ksp)

0.342 -0.285 0.126

6.3. Native Metrics View

In the native metrics view, a small number of metrics that partition the
space are each identified with a particular dimension. The metrics are not fully
orthogonal, in the sense that they show partial correlation and do not intersect
at perfect right angles. Compared with the dimensional realist view, this loses
some information from the excluded metrics, but it is simpler. Since metrics
were originally designed with the intent to capture some particular aspect of
model quality, it is also conceptually clearer. Native metrics are listed in Table[8]
Figure[2|plots a PCA using only the selected metrics on the exploration dataset.
As the current implementation of Earth Movers’ Distance is a delicate measure,
we include a substitute of TGF5 (correlation = 0.75) for when it is unavailable.

Table 8: Native metrics for Adhesion, Relevance and Simplicity, chosen by joint PCA orthog-
onality and conceptual linkage.

Data Set Adhesion Relevance Simplicity

Exploration | Generalisation by Entropic Relevance Structural Simplicity
Trace Floor (5) TGF5 w. Zero Order HRZ by edge count SSEDC

Discovery Earth Movers Entropic Relevance Structural Simplicity
truncated EM w. Zero Order HRZ by edge count SSEDC

6.4. Interpretation of the Adhesion, Relevance, and Simplicity Dimensions
Using Example Models

To give a sense of the three dimensions, and metrics that approximate them,
Figures and illustrate extreme cases. Cases were informed by using al-
ternative fitness functions for SETM which neglected one or more dimensions,
and then the resulting models were optimised for extremity by hand. The cor-
responding metrics are summarised in Table [0]

The examples in Figureuse log Lr = [{a,b)?°, (a,b,c)?, (a,b,c,c)t, (e, £)1].
Note that this log has one frequently occurring trace, (a,b), which dominates
the probability mass, with some variations, and one completely different trace,
(e, ). Model achieves high adhesion and relevance by covering the main
trace and its variations with plausible weights. In model almost perfect
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Figure 12: 3D plot of metrics Trace Generalisation by Uniqueness (5) (TGF), Entropic Rele-
vance Zero Order (HRZ), and Simplicity by Edge Count (SSEDC), against PCA dimensions
for those three metrics, on the exploration dataset.

Table 9: Quality metrics for paradigm examples in Figures and

Adhesion Relevance Simplicity
Model Fig. Log ADM TGF5 EM | RDM HRZ | SDM |F|
A+ R+ S++ 10a| Lg 0.80 0.72 091 0.72 2.76 0.67 4
A++ R++ S+ 10b| Lg 0.83 0.96 0.94 0.74 1.76 035 10
Trace; A++ R++ S- 10c| Lg 0.91 1.00 0.91 0.62 1.08 0.18 22
Flower; A- R mid S mid 10d| Lg 0.28 0.00 0.21 0.88 6.37 0.57 29
Partial Major Trace; A+ R- S+ 11| Lp 0.35 0.00 0.73 0.51 14.42 | 0.52 8
Half log; A mid R mid S+ 11| Lg 0.65 0.50 0.50 073 6.92 | 0.42 8
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adhesion and relevance has been achieved at the cost of simplicity. This model
also has perfect control-flow fitness and precision. Trace model achieves
perfect adhesion and relevance at the cost of poor simplicity.

Flower model [I0d] has poor adhesion and relevance, despite perfect control-
flow fitness. The many possible alternative traces generated by a flower model
mean little probability mass is devoted to either similar traces (for adhesion)
or entire traces (for relevance). This flower model has weights taken from the
event frequencies in the log (equivalent to the Frequency Estimator [I3]), but
this has had little quality impact without further structure constraining the
space of possible subtraces.

In Figure two logs are considered versus the same simple sequence model.
In log L, a single trace, (a,b,c,d,e) accounts for the vast majority of cases
(partial major trace). Every event except the last is covered, resulting in high
(not perfect) adhesion, but poor relevance. In L (half log), there are two
frequently occurring traces, one of which matches the model perfectly, and one
not at all. As half probability is a state that can minimise entropy, we expect
somewhat higher relevance, with at best mid adhesion.

In Table [0] we can see how the metrics identified in Sections and
perform against these extreme cases. To calculate these figures, a modification
had to be made to the dimensional realist metrics, as the SSEDC metric returns
zeroes for very small logs, such as those explored in this section. We substituted
a small log variant which divided model edge count by the product of trace vari-
ants and average trace length in the dimensional realist measures, and provide
edge count (|F|) as a substitute for the native metric.

For Adhesion, the earth movers (EM) and ADM metrics reflected the process
edits needed across all models. Trace Generalisation by floor (TGF5) generally
followed the pattern, but returned zero for the Partial Major Trace scenario,
due to the small log.

For Relevance metrics, the Entropic Relevance (HRZ) metric behaves con-
sistently with expectations across the models, though it also shows correlation
with Adhesion metrics and makes it difficult to construct a scenario with high
Relevance and low Adhesion. The RDM measure does show high relevance for
the Flower model. Though being able to map models to all corners of orthog-
onal dimensions does meet one goal, the conceptual obscurity may undermine
use of this as a productive design constraint for model construction.

For Simplicity metrics, both the edge count and the SDM measure show some
consistency with expectations. The SDM measure punishes the perfect model
more than the trace model, however, which is due to the influence of factors
such as Trace Ratio (TRG2), and again works against intuitive understanding,.

7. Discussion

So far, as shared in Section [, we have seen variations and correlations
across the twenty-five metrics collected on 9301 models generated from six real-
life logs. These have been analysed quantitatively, identifying the three quality
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dimensions Adhesion, Relevance and Simplicity. We saw that these components
were not associated with known regularities in the experimental inputs, in the
form of logs or generation sources. We chose metrics based on the dimensions
using two alternative dimensional interpretations. We also investigated example
models at the extremes of the dimensions, based on these metrics.

In this section, we discuss the two dimensional interpretations, Dimensional
Realism versus Native Metrics, in more detail. We also cover potential applica-
tions, and limitations of the current design.

7.1. Contrasting Dimensional Interpretations

The two interpretative views we introduce have complementary strengths
and weaknesses. Dimensional realism (DR), by treating PCA components as
real underlying structures, allows for the revelation of features not directly il-
lustrated by any given metric. Being based directly on the outcome of a principal
components analysis, DR is also guaranteed to yield perfectly orthogonal dimen-
sions. Yet that same guarantee, and the “synthetic” nature of PCA, also makes
DR dimensions sensitive to the exact metrics chosen as inputs. As new metrics
are proposed by the community, or excluded for changing design reasons, the
associated dimensions will change.

Native metrics allow for a clearer association between the design concept
of a particular metric, the resulting measurement on a specific model, and the
dimension it is identified with. However, they lose some information on the
underlying quality space, being limited to one metric per dimension. Those
metrics also only approximate orthogonality, and may conceal features that DR
metrics can indirectly indicate.

7.2. Potential Applications

Stochastic phenomena are widespread in the real world, and stochastic mod-
els are used widely in settings from Operations Research [43], to healthcare [33]
and performance prediction [40]. For stochastic process models specifically, more
automated discovery techniques are emerging, but existing metrics for evaluat-
ing their quality are not sufficient. To use these discovered models intelligently,
more widely applicable metrics, and a better understanding of their meaning
and relations, are needed. We envision the dimensions and metrics proposed
above can advance this understanding.

It is often necessary in process modelling and mining to choose among po-
tential representations based on a specific use case. For example, very detailed
models with lots of elements may be very accurate, but make a descriptive
model difficult to explain. The decision is ultimately one of practitioner judge-
ment. Using these dimensions, and their associated metrics, that judgement
can now be better informed in a fine-grained way. A practitioner or modeller
can decide how much their model adheres strictly to the process it describes, or
how much information on complete traces to sacrifice in working with a simpler
model. Better tooling can help share this information with users in the right
context. For example, an intelligent slider or two dimensional “colour-picker”
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widget could allow a user to navigate the right level of quality and complexity
for their use case. Commercial process mining tools already make use of fre-
quencies. This implicit use of stochastic models could be made explicit, and our
work above can help in designing and implementing such features. For instance,
there is little point in calculating two highly correlated metrics.

Another strength of stochastic model comparison can be in exploring change
in processes over time, a phenomena known as concept drift. The Earth-movers’
distance metric (EM) has been used to measure this kind of change [§]. Using
these approaches, we can imagine a plant manager seeing their manufacturing
process has changed, because of the changing importance of existing paths of
workflows in the plant, a condition hard to detect without a stochastic perspec-
tive. Tools might visualise the impact of the change, for more rapid, productive
troubleshooting.

The metrics based on play-out trace probability (Definition E[) may now be
calculated on more types of models, and with relatively low computational cost.
Our public reference implementation also shows the feasibility of implementing
these metrics in industrial tools.

7.8. Limitations

Although a wide range of models and logs were used, other datasets may
reveal other elements. Larger logs of over 200,000 traces or 16 activities were
not used, and SETM use was limited by larger numbers of log activities. The
stochastic models used were limited to SLPNs, though some of the discovery
models were derived from discovery algorithms with BPMN output, and a mix of
discovery algorithms was used. The use of PPTs for random generation and for
the seed generation in the SETM limits the possible models generated, though it
also constrains them to sound models with consistency constraints on stochastic
weights.

The example models in Section help show the dimensions in use and
build an intuition of how these quality dimensions apply in practice. A model
with high Relevance and low Adhesion was not identified in this research: the
closest was a model with middling to low Adhesion (in Figure [L1). Such a
model would be informative, make the examples symmetrical, and clarify the
relationship between different dimensions in practice.

That new metrics changed the dimensional analysis shows the way this em-
pirical work will have to evolve as new data is available. Models discovered from
synthetic data can also be used to deepen our understanding of quality mea-
surement of stochastic processes. As an experimentally derived theory, further
experimentation will be the ultimate test of generality for all of the proposed
dimensions.

8. Conclusion

Organisations may be understood by what they do, and what they do may
be described by stochastic process models. To understand the quality of such
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models, we conducted two experiments studying stochastic process model qual-
ity metrics and relationships. Models were generated from six real-life logs and
collected using both random model generation and stochastic process discov-
ery. Analyzing a variety of computationally cheap metrics across thousands of
models, and metrics from the literature, three quality dimensions were observed
with the help of principal component analysis. We named these dimensions
Adhesion, Relevance and Simplicity, evolving our understanding of the three
dimensions during the course of the experiments and analysis. Based on the
analysis, we suggested possible metrics for these dimensions, and showed their
use on example models demonstrating their extremes.

A number of avenues are open for future work. The methods here suggest
extensions of existing techniques, and new implementations of those techniques.
Large model datasets may be used to expand the empirical foundations of pro-
cess mining in other ways. By integrating the dimensions and their associated
metrics into process mining tools, we can investigate their applied use by prac-
titioners. Lastly, it is a spur for the invention of new metrics based on the
proposed dimensions, and for the theory to be challenged with further empirical
tests.

Acknowledgements. Thanks to Artem Polyvyanyy for pointing out that the
entropic relevance measures could be straightforwardly extended to any model
whose stochastic language was known. The eResearch Office at QUT provided
computational resources for this work.
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Appendix A. Detailed Exploration Metrics

This section details the measures summarized in Table @ For the measure
definitions below, let event log L € £, model g € N, wy € N. To obtain the
play-out log M € L%, the model g is played out to k traces, then occurrences
are scaled to match the original log: M = % - spg(g, k,wo).

The first measure is a simplification of the stochastic Earth Movers’ distance [25].

EMT Earth Movers with play-out trace weighting.

EMT(M,L)=1— ‘% > max(L[o] — M[0],0)

o€l
Two measures address how much of the probability mass of the log is in shared
traces.
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TMO Trace Probability mass overlap.

TMO(M,L)= > <LH|LM)[U]
oceLMM
TOR Trace overlap ratio.
|L M M|
L]
Analysis of which subtraces occur in both log and model (represented by the
play-out log) approximate fitness.

TOR(M, L) =

ARG The Gower’s similarity [20] between activity count ratio vectors. This
measure is designed to be deliberately sensitive to variation between poor quality
models, when other measures may be zero. Given log L, take ST,,(L) to be the
subtraces of length n, os#L the subtrace frequency of o4, with each occurrence
in a trace counted, and ||L||,, to be the total subtraces of length n. ARG is a
special case: ARG=TRGI.

TRGn Subtrace ratios, activity ratios generalized to sub-traces of length n.
TRG2, TRG3 and TRG4 are all measured.

TRGn(M,L)= Y  1-y,
cEST, (LUM)
here y 1 o#L  oH#M
w > = _
max(o#L, o#M) |[|L|ln  [[M]|n

Two simplified variants of evaluation measure entropy [29], based on play-out
logs, are used to define fitness and precision measures. The first uses bag inter-
section.

HIFT Play-out entropy intersection fitness.
H(LNM)

HIFT(M,L) = min(1, H(L) )
HIPT Play-out entropy intersection precision.
L H(LNM)
HIPT(M, L) = mln(]., TM)

The second entropy variant uses SDFA projection [29] function P: L1 x LT —
LT, where traces are used as SDFA tokens.

P(L1,Ly) =Lp U [<>|L1|—\Lp|]
where Lp = [O'i € Ly | 3j>0 O'j € Lg]
HJFT Play-out entropy projection fitness.

H(P(L, M))
HIJFT(M,L) = —————*
JET(M. L) H(L)
HJPT Play-out entropy projection precision.
_ H(P(M, L))
HJPT(M,L) = T
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XPU Existential precision adapts Alpha precision [I7] by calculating the prob-
ability mass of model traces represented at least once in the log.
1
XPU(M, L) = T > Mo]
oinL
Three simplicity measures are scaled by log size to impose a valid upper bound
of 1.
SSENC Structural simplicity by entity count [34].
_ P+ IT]
L]
SSEDC Structural simplicity by edge count [34].

SSENC (g, L) = max(1 ,0)

SSEDC(g,L) = max(1 — ||1;||,0)

SSS Structural simplicity by all structural components in SLPNs. This accounts
for stochastic features not found in existing structural simplicity measures.

$8S(g, L) = max(1 — —(|P|+ |T| + |F| +| U w0

Il T

The following generalisation measures are at a trace level, and are taken from
example measures in [2].
TGF1 Generalisation by trace floor, genranm, [2]. We also use TGF5 and
TGF10 as measures for trace floors of 5 and 10 respectively.
|[o €llo € M A Llo] > ¢

L
TGDU Generalisation by trace uniqueness difference, genpon,, , [2].
|[oc € Lo € M]| — |LN M|

|L|
CSS Structural Complexity incl. stochastic includes both control-flow and
stochastic features of a SLPN in a common metric. It is a denormalised in-
verse of SSS.

CSS(g, L) = |P| + |T| + |F| + | | J W)

teT

MEC Model entity count is a count of places and transitions.

MEC(g,L) = |P| + [T
MEC Model edge count is a count of connecting arcs.

MEC(g,L) = |F|

TGF1(M,L) =

with ¢ > 1

TGDU(M, L) =
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