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Abstract—Conformance checking techniques compare process
models of organizational behavior with observed process execu-
tions to reveal their deviations. Traditional alignments concern
individual activities and provide a single out of potentially infinitely
many explanations for observed deviations. Skip alignments lift
insights to subprocesses and provide all possible explanations.
Though valuable for analysts and process mining tools, there exist
no interpretations how likely these deviations are.

In this paper, we introduce skip probabilities revealing how
likely certain subprocesses deviate w.r.t. an event log of observed
process executions. We show the formal derivation of this
calculation and demonstrate the feasibility of its computation. By
analyzing a realistic case, we empirically show that yet hidden
process insights can be derived from skip probabilities and how
they contribute to targeted process improvement.

Index Terms—stochastic process mining, conformance checking,
skip alignments, process trees

I. INTRODUCTION

When performing a process, what we do is important, but
what we do not do is often more important. Conformance
checking techniques compare an event log of traces from real-
world process executions against a model of desired process
executions [1], [2]. This comparison reveals to what extent
the recorded and the modeled process correspond, where they
deviate, and what these deviations look like. Many process
mining techniques such as model repair [3], [4], process
comparison [5], and genetic process discovery [6] derive
insights from whether certain deviations occurred in the log.
For instance, in process comparison, cohorts are perceived as
dissimilar if they reveal different deviations.

Knowing whether deviations exist is important. Consider a
process for issuing road traffic fines. It is relevant to know
whether particular ‘appeal’ activities are performed or not, as
revealed by existing techniques. It is even more useful to know
how likely it is that some ‘appeal’ activities or, even more
general, the entire ‘appeal’ subprocess is skipped.

Accordingly, this paper asks What is the probability of not
executing a subprocess? We term this a skip probability. It
allows us to detect, stochastically quantify, and interpret process
conformance across every subprocess. This can provide analysts
with fine-grained process insights and guide targeted process
improvement based on which parts of a process are significantly
deviating, and so require the most attention. For this calculation
we need a source of observations (an event log), a process
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model, stochastic distribution information for the model, and
the possible deviations between log and model.

For a process model representation, we use process trees [1],
an established hierarchical representation where subprocesses
can be easily associated with subtrees. Existing stochastic
process mining tools [7]–[9] are used to obtain information on
the distribution in the form of a stochastic language.

For information on deviations, we use skip alignments [10].
These are generalizations of alignments [11], the state-of-the-
art conformance checking technique that synchronizes log
traces with a model to reveal their deviations in terms of
unexpectedly observed activities (log moves) and missing
expected activities (model moves). Skip alignments finitely
summarize all alignments, a potentially infinite set in the case
of silent loops, by generalizing model moves to skip moves.
Hence, they represent conformance on the level of subprocesses,
which basic alignments lack [12], simply showing the existence
of deviations at the level of individual process activities. In a
road fine process, an alignment may show if an appeal was
sent, rejected, or upheld, but a skip alignment can show that
the entire appeal process was missed.

Neither alignments nor skip alignments provide stochastic
conformance, so augmenting skip alignments with skip prob-
abilities allows process mining techniques to derive insights
from whether and how likely deviations occur and how their
analysis should be prioritized. Process comparison on the fines
process may reveal distinct cohorts that share the same types
of deviations but with different likelihoods. Existing process
mining tools may not be able to discriminate these cohorts,
but distinct skip probabilities reveal hidden differences.

We present the formal derivation, a prototype implementation,
and an empirical evaluation on real-world logs, and an analysis
on a realistic example model showcasing novel process insights.

In the remainder of this paper, we discuss related work in
Section II and introduce basics in Section III. In Section IV,
we formally introduce skip probabilities and evaluate them in
Section V before concluding in Section VI.

II. RELATED WORK

Many conformance checking techniques have been proposed
in literature [2]. For instance, token-based replay provides
information on missing and remaining tokens in a Petri net [13]
and alignments being the current state-of-the-art in conformance
checking, as they result in a detailed identification of deviations
in both the log and the model [14]. Several approaches
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Fig. 1: Running example: Process tree N , alignments, skip alignments, and executions for the traces σ1, σ2, σ3.

have been proposed to compute alignments efficiently or
approximately [2]. However, for a given trace, infinitely
optimal alignments may exist due to (i) silent loops, (ii)
multiple equivalent-cost model moves (did we skip transition
a or b in a choice between them?), (iii) concurrency in the
model, and (iv) concurrency between deviations (a log move
and a model move are concurrent by definition). Typical
alignment computations arbitrarily choose one of infinitely
many optimal alignments, which creates a false sense of
certainty if deviations are analyzed, even in aggregated form.
(i) is typically avoided by considering silent steps to have
a non-zero small cost, however this removes the loop from
consideration and thus provides only an approximation [2]. The
concurrency challenges (iii) and (iv) could be addressed by
computing partially ordered alignments [15], though this would
require partially ordered traces. A recent approach addresses
(iii) and (iv) by introducing higher-level patterns of deviations,
such as swapping or repeating activities [16].

Our approach takes as one of its inputs a separate stochastic
path language, provided by a stochastic process model. Stochas-
tic conformance checking techniques such as the Earth Movers’
Stochastic Conformance [17] address (iii) by considering all
model paths, and (i) by sampling. (ii) is not addressed. The
results of this approach can be projected onto process models
to indicate the likelihood of an activity to be a synchronous
move, which avoids (iv), but have not been leveraged to the
conformance of higher-level subprocesses as in this paper.

Our approach in [10] solves (i) and (ii) by lifting model
moves to process tree nodes (skip moves) by compactly
representing all optimal alignments, and addresses (iii) and
(iv) by reordering rules towards a normal form. While solving
(i)-(iv), the approach in [10] does not stochastically quantify
conformance and hence lacks actionable process improvement.
As such, we build upon [10] to compute skip probabilities
by using a second input of a stochastic path language, which
allows us to quantify the likelihood of each skip alignment.

[18], [19] use stochastic information in the alignment
computation. The first one incorporates stochastic model
information into an alignment quality score and based on
it, top-k alignments are computed. The second uses stochastic
MDP planning to rank and compute optimal alignments. Both
approaches do not stochastically quantify model conformance,
which is a key contribution of our approach.

In [20], a stochastic Markovian abstraction (fixed length trace
infixes) is proposed which compares two stochastic languages
based on the expected frequencies of their subtraces. This
results in a global measure of similarity and hence can be

used to assess conformance for a stochastic log language
and a stochastic path language. Unlike our approach, this
conformance result remains at the level of the entire model,
not subprocesses. Furthermore, by splitting model paths into
fixed length subtraces, semantic relations at subprocess level
are lost, other than with our skip probabilities.

III. PRELIMINARIES

In this section, we introduce the basics and fundamental
concepts of process mining. We denote sequences with s =
⟨a1, . . . , an⟩ and write x ∈ s for all elements x in s. The set
of all finite sequences over a set X is denoted with X∗. A
sequence s is a subsequence of a sequence s′ = ⟨b1, . . . , bm⟩,
if s consecutively appears in s′, that is, s is an infix of s′.
s⇂X is s with all elements not in the set X removed, s⇂ ̸=x

is
s with all elements x removed. The concatenation is defined
by s · s′ = ⟨a1, . . . , an, b1, . . . , bm⟩ and the interleaving by
s⋄s′ = {s′′ | s′′ is a permutation of s·s′∧s′′⇂s = s∧s′′⇂s′ = s′}.
For example, ⟨a, b⟩ ⋄ ⟨c⟩ = {⟨a, b, c⟩, ⟨a, c, b⟩, ⟨c, a, b⟩}. For
sets of sequences S, S′, it holds that S · S′ = {s · s′ | s ∈
S ∧ s′ ∈ S′} and S ⋄ S′ =

⋃
s∈S,s′∈S′ s ⋄ s′. A sequence s

is a loose subsequence of s′, if there exists a sequence s′′

and s ⋄ s′′ = s′, i.e., s appears non-consecutively in s′. For
a sequence of pairs s = ⟨

(
e1
a1

)
, . . . ,

(
en
an

)
⟩, π1(s) resp. π2(s)

refer to the sequences of first components ⟨e1, . . . , en⟩ resp.
second components ⟨a1, . . . , an⟩ of the pairs in s.

In process mining, the set A is the set of activities like
send, reject, etc. abbreviated to a, b, etc., a trace σ ∈ A∗ is
a sequence of activities. An event log L = [σm1

1 , . . . , σmk

k ]
is a multiset of traces on the set of trace variants L⊥ =
{σ1, . . . , σk} with multiplicities m1, . . . ,mk. We use σ ∈ L
as a shorthand notation for σ ∈ L⊥. A stochastic log language

is the probability distribution PL = [σ
m1∑
i mi

1 , . . . , σ
mn∑
i mi

n ] on L.
An example event log is L = [σ1

1 : ⟨b⟩, σ2
2 : ⟨a, f, g⟩, σ7

3 :
⟨a, c, g⟩] over the set L⊥ = {σ1, σ2, σ3} with PL(σ1) = 0.1,
PL(σ2) = 0.2, and PL(σ3) = 0.7; letters abbreviate activities.

A process tree is a hierarchical representation of a process.
Its leaf nodes are either activities from A or the specific silent
activity τ /∈ A representing ‘no activity’. Inner nodes are
operators and combine the languages of subtrees. The language
of a leaf node is the (silent) activity itself. The language of an
inner node is obtained by traversing its subtree depending on
the operator type: the children’s languages are concatenated
(sequence), joint (choice), or interleaved (parallel). A loop
repeatedly traverses its two children being a loop iteration: All
but the last iteration traverse the first and then the second child.
The last loop iteration traverses only the first child.



Definition 1 (Process Tree). Over a set of activities A with
τ /∈ A, a process tree N and its path language L are:
• labeled activity: N = a, a ∈ A with L(N) = {⟨a⟩}
• silent activity: N = τ , τ /∈ A with L(N) = {⟨τ⟩}
• N=⊕(N1, ... ,Nk), with k≥2 and ⊕ ∈ {→,×,∧,⟲}:

– sequence: L(→(N1, . . . , Nk)) = L(N1) · . . . · L(Nk)
– choice: L(×(N1, . . . , Nk)) = L(N1) ∪ . . . ∪ L(Nk)
– parallel: L(∧(N1, . . . , Nk)) = L(N1) ⋄ . . . ⋄ L(Nk)
– loop: L(⟲(N1, N2)) = (L(N1) · L(N2))

∗ ·L(N1)

The set of (silent) activities is leafs(N). Every traversal
ρ ∈ L(N) is a model path. We write N ′ ∈ N for the nodes
N ′ in N . Every node is a subtree that starts in N ′, called
the subprocess of N ′. A stochastic path language PN is a
probability distribution on L(N) with PN (ρ) > 0 for all ρ.

Figure 1 shows the running example of a process tree N
composed from 9 nodes N1, . . . , N9, representing the process
of issuing road fines, made from different subprocesses such as
prosecute (N2) or appeal (N5, blue). The appeal subprocess
describes whether an appeal is sustained (c) or rejected (d). The
language L(N) is infinite, because N contains a loop. Loop
iterations of N3 are ⟨g⟩, ⟨g, f, g⟩, . . . . We consider the paths
ρ1 : ⟨a, c, g, f, g⟩, ρ2 : ⟨a, d, g, f, g⟩, ρ3 : ⟨a, c, g⟩, ρ4 : ⟨a, d, g⟩ ∈
L(N) with probabilities {ρ0.11 , ρ0.12 , ρ0.33 , ρ0.34 } ⊆ PN .

An alignment [11] synchronizes a trace from the log to a
model path revealing where and which deviations between
observed and modeled process behavior arise.

Definition 2 (Alignment). Let σ ∈ A∗ be a trace, let ≫ /∈ A
be the no move symbol and let N be a process tree. An
alignment γ for σ on N is a sequence γ = ⟨

(
e1
a1

)
, . . . ,

(
en
an

)
⟩ ∈

((A ∪ {≫})× (leafs(N) ∪ {≫}))∗ such that each element of
γ is either a log move

(
ei
≫
)

with ei ∈ A, a model move
(≫
ai

)
with ai ∈ leafs(N), or a synchronous move

(
ei
ai

)
with ai ∈

leafs(N), ei ∈ A, ai = ei. The sequence of first components
matches the trace σ = π1(γ)⇂A , the sequence of second compo-
nents is an element of the path language π2(γ)⇂leafs(N)

∈ L(N).

The standard alignment cost function assigns costs of 0 to
synchronous moves

(
e
a

)
and to model moves

(≫
τ

)
of silent

transitions, while all other moves incur a cost of 1. The sum of
movement costs is the alignment cost. An alignment is optimal
if there is no alignment for σ on N with lower cost. The set
of optimal alignments of σ on a fixed model N is Γ(σ).

In our example, the trace σ2 has 6 optimal alignments
γ211, γ212, γ221, . . . , γ224 on the model N , shown in Figure 1.

Next, we define the skip language of N [10]. While L(N)
is the set of all traversals of N , i.e., sequences of activities,
the skip language S(N) additionally covers traversals that skip
subtrees of N : Instead of deepening into every subtree of N ,
some subtrees N ′ might be skipped (indicated by a skip s(N ′)),
i.e., no activities of N ′ appear in this skip traversal of N ′.

Definition 3 (Skip Language). Let N be a process tree, let
s(N ′) denote a skip over a subtree N ′ ∈ N , and let S(N) =
{s(N ′) | N ′ ∈ N}. Then, the skip language S(N) of N is:

S(a)={⟨a⟩, ⟨s(a)⟩} S(τ)={⟨s(τ)⟩}

S(−→(N1,..., Nk))={⟨s(→(N1,..., Nk))⟩}∪S(N1) ·...· S(Nk)

\ {⟨s(N1),..., s(Nk)⟩}
S(×(N1,..., Nk))={⟨s(×(N1,..., Nk))⟩}∪S(N1)∪...∪S(Nk)

\ {⟨s(N1)⟩,..., ⟨s(Nk)⟩}
S(∧(N1,..., Nk))={⟨s(∧(N1,..., Nk))⟩}∪S(N1) ⋄...⋄ S(Nk)

\ {⟨s(Np1
),..., s(Npk

)⟩ | p ∈ ⟨1⟩⋄...⋄⟨k⟩}
S(⟲(N1, N2))={⟨s(⟲(N1,N2))⟩}∪{σ |σ∈(S(N1)·S(N2))

∗

· S(N1) ∧ ⟨..., s(N1), s(N2),...⟩ ̸=σ,

⟨..., s(N2), s(N1),...⟩ ̸=σ} \ {⟨s(N1)⟩}

For example, the sequence ⟨a, s(N5), g⟩ is in the skip
language of N in Figure 1: The subprocess N5 is skipped, i.e.,
instead of playing it out to a sequence of activities (either c
or d), the execution of the choice is skipped. According to
Definition 3, this skip is most general, that is, N5 is skipped
rather than N8 and N9. Additionally, the traversal of N is free
from superfluous loop iterations (iterations made from skips)
prior or after the g like dotted in ⟨a, s(N5), s(N6), s(N7). . . . . . . . . . . . . . . , g⟩.

Similar to an alignment, a skip alignment (equivalently
defined for process trees and block-structured Petri nets [10])
synchronizes an observed trace to a model, but using its skip
language S instead of its language L. An alignment γ explains
the absence of N ′ in σ by a sequence of model moves for
one possible traversal ρ ∈ L(N ′). A skip alignment δ keeps
deviations on the level of subprocesses and instead performs a
skip move

( ≫
s(N ′)

)
.

Definition 4 (Skip Alignment). Let N be a process tree, let
≫, s(◦) /∈ A for any ◦, and let σ ∈ A∗. A skip alignment for
σ on N is a δ = ⟨

(
e1
a1

)
, . . . ,

(
en
an

)
⟩ with ei ∈ A ∪ {≫} and

ai ∈ leafs(N) ∪ {≫} ∪ S(N) such that each element
(
ei
ai

)
of δ is either a log move

(
ei
≫
)

with ei ∈ A, a skip move( ≫
s(N ′)

)
for some N ′ ∈ N , or a synchronous move

(
ei
ai

)
with

ai ∈ leafs(N), ei ∈ A, ai = ei. The sequence of first compo-
nents matches the trace σ = π1(δ)⇂A , the sequence of second
components is in the skip language π2(δ)⇂ ̸=≫ ∈ S(N). A skip
alignment is in normal form if arbitrarily ordered moves follow
the precedence ‘log before synchronous before skip moves’, i.e.,
if two moves could be swapped, then their order is determined.

An alignment γ can be lifted to a skip alignment in normal
form δ by replacing sequences of model moves with skip
moves, removing loop iterations only consisting of skip moves,
and reordering these moves. In that case, we say that γ and δ
coincide. For example, ⟨

(
b
≫
)
,
( ≫
s(N1)

)
⟩ is a skip alignment for

the trace σ1 : ⟨b⟩ on the model N in Figure 1: The execution
of the entire tree is skipped and a log move on b is performed.
The alignment γ = ⟨

(≫
a

)
,
(≫

c

)
,
(≫

g

)
,
(

b
≫
)
⟩ coincides with

that skip alignment: First, we lift the three model moves in γ
to a skip move on N1 resulting in ⟨

( ≫
s(N1)

)
,
(

b
≫
)
⟩. Then, we

enforce the precedence order of the normal form by swapping
the skip and the log move resulting in δ = ⟨

(
b
≫
)
,
( ≫
s(N1)

)
⟩.

Note that the precedence is required whenever moves can
be ordered arbitrarily, e.g., in δ21, the synchronous move

(
a
a

)
precedes the skip move

( ≫
s(N5)

)
as their order is not arbitrary: A
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Fig. 2: Overview of the derivation: From the inputs (left), we calculate the skip probability of a subprocess (right).
swap would invalidate the model path (a must come before N5).

As shown in [10], every γ lifts to a unique δ, but multiple
alignments may lift to the same δ, making skip alignments
summaries of alignments. The set of coinciding alignments
of δ is C̄(δ). A skip alignment in normal form is optimal if
one of its coinciding alignments is optimal. While the set of
optimal alignments in potentially infinite, every trace σ has
finitely many optimal skip alignments in normal form, which
we refer to as ∆(σ).

In our example in Figure 1, it holds that ∆(σ1) = {δ1},
∆(σ2) = {δ21, δ22}, and ∆(σ3) = {δ3}. The table indicates
which alignments lift to which coinciding skip alignments.

IV. CALCULATING SKIP PROBABILITIES

In this section, we derive skip probabilities for subprocesses,
which quantify how well each subprocess conforms to a log
of observed process executions. The calculation is illustrated
in Figure 2. We derive the skip probability of a subprocess N ′

in a process tree N based on an event log L and a stochastic
path language of PN . Intuitively, the skip probability of N ′ is
composed from three factors: The probabilities of the different
log traces in L (4) (stochastic log language), the probabilities
of the traces’ optimal skip alignments in normal form (9),
and the probabilities of the executions of N ′ in these skip
alignments (10) (the moves that describe how N ′ is traversed).
As all three probabilities can be formulated on executions, and
executions are moves in skip alignments, the derivation of skip
probabilities boils down to the computation of all optimal skip
alignments in normal form and their stochastic information (8).
Since skip alignments can be computed efficiently [10], in the
following, we derive the remaining probabilistic information.

A. Executions of Skip Alignments

In this section, we establish executions, which describe how
a node in a process tree is traversed within a skip alignment.
Intuitively, an execution is a sequence of moves that traverses a
node N ′ in a process tree, either by activities or by skips, i.e.,
these moves project to a trace in S(N ′). Hence, an execution is
a stencil that highlights parts of a skip alignment that describe
one traversal of a subprocess.

Definition 5 (Execution). Let N be a process tree, N ′ ∈ N
a node, δ an optimal skip alignment in normal form, and
δ′ = ⟨δ′1, . . . , δ′k⟩ a loose subsequence of moves in δ. Then, an
execution is a pair e = (N ′, δ′) such that:
(1) δ′ traverses N ′, i.e., π2(δ

′) ∈ S(N ′).
(2) δ′ does not mix moves of multiple traversals of N ′, i.e.,

any move δi ∈ δ between δ′1 and δ′k that is part of a
traversal of N ′, is in δ′.

(3) If N ′ is a loop node, then δ′ captures all its iterations, i.e.,
there is no additional loop iteration δ̄′ in δ before or after
δ′ such that δ̄′ · δ′ or δ′ · δ̄′ would be an execution of N ′.

We refer to the skip alignment of e with δ(e) and to the node
executed by e with N(e).

The definition implies that executions do not contain log
moves as they do not participate in a subprocess’s is traversal.

As a running example, we inspect the appeal sub-
process N5 in Figure 1 (blue) for which we derive a
skip probability, i.e., the probability that the appeal deci-
sion is missing. An execution of the subprocess N5 in
δ21 = ⟨

(
a
a

)
,
( ≫
s(N5)

)
,
( ≫
s(N6)

)
,
( f
f

)
,
( g
g

)
⟩ is (N5, ⟨

( ≫
s(N5)

)
⟩):

(1) ⟨s(N5)⟩ ∈ S(N5), (2) N5 is traversed just once in δ21, and
(3) N5 is no loop hence there cannot be a missing loop iteration.
Intuitively, the execution is a description of how N5 is traversed
in δ21. In the skip alignment δ3, N5 is executed by firing one of
its children (c), hence, the execution of N5 in δ3 is (N5, ⟨

(
c
c

)
⟩).

Across the four optimal skip alignments of L, there are
three executions of N5: δ21 : (N5, ⟨

( ≫
s(N5)

)
⟩) denoted e21,

δ22 : (N5, ⟨
( ≫
s(N5)

)
⟩) denoted e22, δ3 : (N5, ⟨

(
c
c

)
⟩) denoted e3.

Note that there is no execution of N5 in δ1 as N5 is neither
traversed nor skipped. The executions of N5 in the different
skip alignments are indicated by dashed lines in Figure 1.

For a fixed process tree N , all optimal skip alignments in
normal form are ∆ =

⋃
σ∈A∗ ∆(σ). We derive all executions:

E = {e | e an execution ∧ δ(e) ∈ ∆ ∧N(e) ∈ N}
Nodes N ′ ∈ N , traces σ ∈ A∗, and skip alignments δ ∈ ∆
project to subsets of E:

EN ′ = {e | e ∈ E ∧N(e) = N ′}
Eσ = {e | e ∈ E ∧ δ ∈ ∆(σ) ∧ δ(e) = δ}
Eδ = {e | e ∈ E ∧ δ(e) = δ}

We additionally define the set of skip executions on E:
Eskip = {e | e ∈ E ∧ e = (N ′, ⟨

( ≫
s(N ′)

)
⟩}

Note that E and each subset are tightly bound to the process
tree N as every execution corresponds to a node in N , but are
independent of an event log. Information about the event log
is used later when deriving skip probabilities.

For our example, Figure 3 shows the set of executions EN5 .
The set is infinite, but e21, e22, and e3 are the only executions
that result from our example log L. Dashed boxes indicate
EN5

∩ Eδ and EN5
∩ Eσ for the traces σ2 and σ3, and their

optimal skip alignments in normal form δ21, δ22, and δ3. Note
that δ1 and hence σ1 reveal no executions of N5, i.e., the box
of δ1 resp. σ1 would be empty.
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Fig. 3: Drawing from executions (EN5
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B. Skip Probabilities

In this section, we define skip probabilities for a process
tree N and an event log L, which quantify conformance of
subprocesses. That is, we annotate each node N ′ ∈ N with the
probability PN ′(skip) that N ′ is skipped when observing the
process N ′. We derive skip probabilities from the deviation
information captured by all optimal skip alignments in normal
form. This guarantees that the probabilities are founded on the
full picture of all optimal alignments efficiently summarized by
all optimal skip alignments in normal form. Formally, PN ′(skip)
is the probability that when we draw a random execution, that
is, a stencil, from EN ′ , that execution is a skip move:

Definition 6 (Drawing from Executions). Let N be a process
tree and N ′ ∈ N a node. Then, the random experiment drawing
from executions of N ′ is defined by

• the outcomes EN ′ being the set of executions of N ′

• the following events:
– Eskip ∩ EN ′ : skip executions of N ′, denoted ‘skip’
– Eδ ∩ EN ′ for δ∈∆: executions of N ′ in δ, denoted δ
– Eσ ∩ EN ′ for σ ∈ A∗: executions of N ′ when

synchronizing σ with N , denoted σ
• the probability measure PN ′(e) for all e ∈ EN ′

Note that we overload the symbols δ and σ with events δ and
σ, i.e., with sets of executions, to foster readability. Formally,
skip alignments δ and traces σ project to subsets δ, σ of EN ′ .

For our example set EN5
in Figure 3, the boxes indicate all

non-empty events of the example log L.
The desired skip probability PN ′(skip) rewrites with

marginalization and the chain rule to individual executions:

PN ′(skip) =
∑

e∈EN′

PN ′(skip | e) · PN ′(e) (1)

The probability PN ′(skip | e) is the probability that e is a skip
on the node N ′, i.e., a property we can read off from the
execution. Hence, we determine PN ′(skip | e) with certainty:

PN ′(skip | e) =

{
1 if PN ′(e) ̸= 0 ∧ e ∈ Eskip

0 otherwise
(2)

For our example (Figure 1), PN5
(skip | e21) = PN5

(skip | e22)
= 1 but PN5

(skip | e3) = 0, i.e., the first two executions are
skip moves, the third one is not. To conclude PN ′(skip), we
still need to derive the execution probability PN ′(e), i.e., PN5

.

C. Execution Probabilities

In this section, we derive PN ′(e), the probability to draw e
from EN ′ . Intuitively, we ask for the probability to observe a

γ211 γ212

γ221 γ222 γ223 γ224

ρ1 ρ2

ρ3 ρ4

δ22
δ21

Γ(σ2)

Fig. 4: Drawing from optimal alignments (Γ(σ2)).

certain skip alignment with a certain traversal of N ′. First, we
rewrite PN ′(e) with marginalization and the chain rule:

PN ′(e) =
∑
δ∈∆

PN ′(e | δ) · PN ′(δ) (3)

=
∑
δ∈∆

PN ′(e | δ) ·

(∑
σ∈A∗

PN ′(δ | σ) · PN ′(σ)

)
The three factors intuitively describe a level-wise construction
of PN ′(e): Starting from all executions EN ′ , the traces σ ∈
A∗ partition them into subsets Eσ ∩ EN ′ . Each partition is
itself decomposed by optimal skip alignments in normal form
δ ∈ ∆(σ) into partitions Eδ ∩ Eσ ∩ EN ′ . In Equation (3), we
relax the probability derivation to probabilities for each small
partition. The probability PN ′(σ) of sets Eσ ∩EN ′ is derived
from the stochastic log language. It is then further distributed
over the subsets Eδ∩Eσ∩EN ′ resulting in PN ′(δ | σ)·PN ′(σ).
Finally, this probability is distributed to individual executions
e ∈ Eδ ∩Eσ ∩EN ′ with PN ′(e | δ) ·PN ′(δ | σ) ·PN ′(σ). We
discuss how to infer each of these three probabilities using the
stochastic path and log languages PN and PL.

1) Trace Probability: For a trace σ, PN ′(σ) is the probability
that an execution of N ′ appears in a skip alignment of σ. The
probability to observe the trace σ in reality is given by PL(σ),
hence we derive PN ′(σ) from it.

Formally, if σ /∈ L, then σ does not contribute to the
conformance of L with N ′, i.e., we set PN ′(σ) = 0. Note
that not every σ ∈ L may be explained with an execution of
N ′, i.e., possibly Eσ∩EN ′ = ∅. Hence, we derive PN ′(σ) from
the subdistribution of traces that can be explained with N ′:

PN ′(σ) =

{ PL(σ)∑
σ′∈Ω PL(σ′) if σ ∈ L ∧ Eσ ∩ EN ′ ̸= ∅

0 otherwise
(4)

where Ω = {σ′ | σ′ ∈ L ∧ E(σ′) ∩ EN ′ ̸= ∅}.
For example, the skip alignment δ1 projects to the empty set

on EN5 in Figure 3. Hence, PN5(σ1) = 0. The probabilities
PL(σ2) = 0.2 and PL(σ3) = 0.7 rescale to PN5

(σ2) = 0.22
and PN5

(σ3) = 0.78 in the subdistribution of PL on {σ2, σ3}.
2) Conditional Skip Alignment Probability: For a fixed trace

σ, PN ′(δ | σ) is the probability that the skip alignment δ
contains an execution of N ′. We derive this probability from a
second random experiment describing the probability to obtain
specifically δ when aligning σ to N . First, we introduce this
second random experiment. Then, we derive PN ′(δ | σ).

The experiment is defined on the set of optimal alignments
Γ(σ) of σ. On that set, Pσ(γ) is the probability to observe
the alignment γ for σ. Formally, Pσ(γ) is the probability that



when drawing from the set of optimal alignments Γ(σ) of σ,
the drawn alignment is γ.

Definition 7 (Drawing from Alignments). Let N be a process
tree, σ ∈ A∗ a trace, ρ ∈ L(N) a model path, and Γ(ρ) ⊆⋃

σ′∈A∗ Γ(σ′) the set of optimal alignments projecting to the
model path ρ. Then, the random experiment drawing from
alignments of σ is defined by

• the set of outcomes Γ(σ) being the set of optimal
alignments of σ on N

• the following events:
– Γ(ρ) ∩ Γ(σ) for ρ ∈ L(N): optimal alignments of σ

that project to ρ, denoted ρ
– C̄(δ) ∩ Γ(σ) for δ ∈ ∆: optimal alignments of σ

summarized by δ, denoted δ
• the probability measure Pσ(γ) for γ ∈ Γ(σ)

We overload ρ and δ with events ρ and δ to foster readability.

For example, Figure 4 illustrates the outcomes Γ(σ2) =
{γ211, γ212, γ221, . . . , γ224} of σ2 aligned to the process tree
N , see Figure 1. The six alignments project to four model paths
(dotted boxes): γ211 uses the model path ρ1, γ212 uses ρ2, γ221
and γ222 use ρ3, γ223 and γ224 use ρ4. Dashed boxes indicate
which alignments summarize to the same skip alignment. The
summaries of γ211, γ212 to δ21 and γ221, . . . , γ224 to δ22 are
the same as in Figure 1, discussed in Section III.

We derive Pσ(γ) from the stochastic path language PN .
Therefore, we rewrite Pσ(γ) by marginalization and chain rule:

Pσ(γ) =
∑

ρ∈L(N)

Pσ(γ | ρ) · Pσ(ρ) (5)

Intuitively, we relax the probability derivation to model paths,
i.e., the probability to observe the alignment γ given we see
its model components are ρ, and the probability to see ρ itself.

The probability to observe a model path ρ is given by PN (ρ),
hence we derive Pσ(ρ) from it. All paths ρ ∈ L(N), that can
optimally be aligned to σ, they form a subdistribution on L(N)
that we derive Pσ(ρ) from:

Pσ(ρ) =

{ PN (ρ)∑
ρ′∈Ω PN (ρ′) if Γ(ρ) ∩ Γ(σ) ̸= ∅

0 otherwise
(6)

where Ω = {ρ′ | ρ′ ∈ L(N) ∧ Γ(ρ′) ∩ Γ(σ) ̸= ∅}.

Next, we derive the conditional probability Pσ(γ | ρ). If
Pσ(ρ) = 0, then no alignment of σ projects to the model path
ρ, specifically not γ, i.e., Pσ(γ | ρ) = 0. Likewise, alignments
not using ρ map to Pσ(γ | ρ) = 0. Because all alignments
in Γ(ρ) ∩ Γ(σ) are cost-minimal, share the same model path
ρ, and align the same trace σ, prior knowledge on ρ does
not differentiate these alignments. Hence, we can assume a
uniform distribution Pσ(γ | ρ):

Pσ(γ | ρ) =

{
1

|Γ(ρ)| if Pσ(ρ) ̸= 0 ∧ γ ∈ Γ(ρ)

0 otherwise
(7)

Γ(ρ) is finite for every path ρ, hence 1
|Γ(ρ)| is well-defined.

Since alignments summarize to a unique skip alignment,

Pσ(δ) is the sum of its coinciding alignment probabilities:

Pσ(δ) =
∑

γ∈C̄(δ)

Pσ(γ) (8)

Note that C̄(δ) may be infinite, i.e., in practice we may compute
C̄(δ) up to silent loop iterations (finite). Hence, all deviations
are still captured, but their weighting becomes approximate.

For example, the optimal alignments of σ2 cover the
four model paths ρ1, . . . , ρ4 with a total probability of
PN (ρ1)+PN (ρ2)+PN (ρ3)+PN (ρ4) = 0.8, hence Pσ2(ρ3) =
PN (ρ3)/0.8 = 0.375. The alignment γ221 is one of two align-
ments of σ2 using ρ3, hence Pσ2

(γ221 | ρ3) = 1/|Γ(ρ3)| = 0.5.
This leads to the alignment probability Pσ2

(γ221) = 0.5 ·
0.375 = 0.1875. Repeating the derivation for γ222, . . . , γ224
leads to Pσ2(δ22)=Pσ2(γ221)+. . .+Pσ2(γ224)=0.75.

Finally, we derive PN ′(δ | σ) from Pσ(δ). This is possible,
as Pσ is implicitly conditioned by σ. If PN ′(σ)= 0, then σ
cannot be explained with any execution of N ′, i.e., also not with
an execution from the skip alignment δ, hence PN ′(δ | σ) = 0.
Similarly, if δ contains no execution of N ′, then it holds that
PN ′(δ | σ) = 0. Otherwise, PN ′(δ | σ) is Pσ(δ), but restricted
to the subdistribution of skip alignments that execute N ′:

PN ′(δ | σ) =


Pσ(δ)∑

δ′∈Ω Pσ(δ
′
)

if PN ′(σ) ̸=0∧Eδ∩EN ′ ̸=∅

0 otherwise
(9)

where Ω = {δ′ | δ′ ∈ ∆(σ) ∧ E(δ′) ∩ EN ′ ̸= ∅}.
In our example, the trace σ2 has two optimal skip alignments

in normal form, δ21 and δ22. Hence, for δ22 we derive
PN ′(δ22 | σ2) = Pσ2

(δ22)/Pσ2 (δ21) + Pσ2 (δ22) = 0.75. Here,
PN ′(δ22 | σ2) = Pσ2(δ22) as both δ21 and δ22 execute N5.

3) Conditional Execution Probability: For an execution e
and an optimal skip alignment in normal form δ, PN ′(e | δ) is
the probability that an execution of N ′ in δ is e. If δ contains
no execution of N ′ (PN ′(δ) = 0), then specifically δ contains
not the execution e, hence PN ′(e | δ) = 0. Similarly, if e is
not part of δ, then PN ′(e | δ) = 0. As we do not consider
time, every move in a skip alignment, and thus every execution,
appears atomic. Hence, we can assume a uniform distribution
across the executions of N ′ in δ:

PN ′(e | δ) =

{
1

|Eδ∩EN′ | if PN ′(δ) ̸= 0 ∧ e ∈ Eδ

0 otherwise
(10)

This probability is well-defined because Eδ ∩EN ′ is finite for
every δ. Note that PN ′(δ) =

∑
σ∈A∗ PN ′(δ | σ) · PN ′(σ) is

given by Equations (4) and (9).
In our example, the execution e22 is the only execution

of N5 in δ22, hence certainty follows, i.e., PN5
(e22 | δ22) =

1. To derive PN5
(e22), all three results from Sections IV-C1

to IV-C3 are multiplied, leading to PN5
(e22) = PN5

(e22 |
δ22)·PN5(δ22 | σ2)·PN5(σ2) = 0.165. The same computations
for e21 and e3 lead to PN5(e21) = 0.055 and PN5(e3) = 0.78.
Only e21 and e22 describe a skip of N5, e3 does not. Hence,
PN5

(skip) = PN5
(e21) + PN5

(e22) = 0.22. We conclude: If
N5 is expected to take place, then with 22% probability, N5

fails to execute, i.e., the appeal was not handled. The other
non-zero skip probabilities are 10% for N1 and 3% for N6.
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TABLE I: Logs’
Complexities.
Log Variants

Declarations 753
Fines 231
Payment 89

V. EVALUATION

First, we evaluate the runtime on a prototype implementation.
Then, we discuss how to exploit skip probabilities for process
insights. We use three publicly available event logs (BPIC20
Declarations , Road Fines , BPIC20 Payment , see Table I)
and nine process models for our evaluation.

A prototype has been implemented in Python and is publicly
available . We apply the following pipeline of five steps,
whose instantiation we refer to with SP. First (S1), from each
event log, process trees are discovered using the Inductive
Miner as it is widely adopted in practice [21], the Indulpet
Miner being a combination of miners and often Pareto optimal
w.r.t. model quality measures [22], and a random process tree
generator as a worst case scenario as it captures no relation
to the log, see repository. Second (S2), we compute for each
log and model all optimal skip alignments in normal form
using [10]. Third (S3), we compute for each skip alignment
those coinciding optimal alignments that never traverse both
children of a loop with only model moves (no superfluous
loop iterations, see (8)). Fourth (S4), we use Ebi [9] to
estimate stochastic path languages. The tool uses a Petri
net representation of the model, techniques for other model
representations exist too [8]. Note that Ebi computes exact
model path probabilities independent of the structural silent
transitions used in Petri net models. The estimation is based on
activity frequencies [7]; different estimators are conceivable,
however, we expect similar results, because we use the estimator
only to outweigh the (skip) alignments of the same log trace.
The underlying skip information remains unchanged as all skip
alignments are considered regardless of the used estimator,
causing little variation in the resulting skip probabilities. Fifth
(S5), we derive skip probabilities using our approach.

A. Runtime of the Skip Probability Derivation

We measure the runtime of SP aggregated over the steps
(S2-S5). We compare the computation time of our approach
against the only known other techniques: DP [16] computes
deviation patterns from alignments and SA [10] (essentially
(S2)) computes all optimal skip alignments in normal form
and the relative frequency of skip moves. All computations
are reproducible (5.8 GHz i9 CPU, 32 GB RAM). Figure 5
shows results for each of 9 instances, i.e., logs and models.

Across all instances, the average runtime was 91.6 s for SP,
224.6 s for DP, and 1.7 s for SA. SP can never be faster than
SA, as the skip alignment computation is a step of SP (S2).

Across all instances, SA is fastest. The difference between SA
and SP results from steps (S3-S4): Reversing the summarization
and reordering moves takes up to 98% of the runtime of SP
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Fig. 6: Process tree excerpts with annotations.

Fig. 7: Frequency annotated Petri net excerpt from RC.

(Inductive Miner, Fines log). It also causes a high runtime of SP
for the Declarations log and the random model: 2041 optimal
skip alignments for 753 variants summarized 6 930 693 optimal
alignments; for each one, a path probability is computed.

On 8/9 instances, DP is slower than SP as an optimization
problem needs to be solved. The only converse for the
Declarations log and the random model results from the above
described blow-up: DP only considers one alignment per trace.

Threats to validity include the different model architectures
that the algorithms are designed for (process trees for SP, SA;
arbitrary Petri nets for DP). They limit generalizability, but
do not invalidate the conclusion that the computation of skip
probabilities is feasible runtime-wise.

B. Process Insights from Skip Probabilities

As a case study, we inspect the Road Fines log and its
Inductive Miner model, as derivable insights are similar for the
other logs and models. We compare the output of our pipeline
for skip probabilities SP against three conformance annotations
to discuss commonalities and differences in the revealed process
insights: Deviation patterns of log and model moves derived by
DP [16], relative frequencies of skip moves in skip alignments
SA [10], and absolute frequencies of synchronous and model
moves from the ProM plugin ‘Replay a Log on Petri Net for
Conformance Analysis’ RC [23]. A comparison against [18]
is not possible, as they stochastically compute alignments but
do not use them to derive process deviation insights at any
level of the process. Figure 6a shows probabilities SP for every
subprocess that at least requires to execute one labeled activity:

Using one optimal alignment per trace, DP computes five
types of deviation patterns. Out of the 442 patterns found, 140
were skip patterns. Only one skip pattern operates on a process
structure higher than activities, being the choice in Figure 6a
(fine box). DP provides no statistical information for that skip,
while SP detects and quantifies high-level deviations for every
level: The probability that the choice ‘judge/no judge’ was
expected but missing out in reality was 0.001%. Given that SP

https://data.4tu.nl/datasets/91fd1fa8-4df4-4b1a-9a3f-0116c412378f
https://data.4tu.nl/datasets/91fd1fa8-4df4-4b1a-9a3f-0116c412378f
https://data.4tu.nl/articles/dataset/Road_Traffic_Fine_Management_Process/12683249/1
https://research.tue.nl/en/datasets/bpi-challenge-2020-request-for-payment
https://git.rwth-aachen.de/philippbaer/skip-probabilities
https://git.rwth-aachen.de/philippbaer/skip-probabilities


assess and quantifies high-level deviations for all subprocesses,
we conclude that SP complements DP with additional insights.
SA utilizes all optimal skip alignments in normal form for

relative frequencies on how often each subprocess was skipped,
shown in Figure 6b. The frequencies cannot be interpreted as
probabilities, since they reflect the fraction of skip alignments
in which a certain subprocess was skipped. This fraction is
not corrected w.r.t. the varying number of skip alignments per
trace variant, i.e., the traces’ importance. That is, the 50.7%
at the parallel (appeal box) reflect that half of the computed
skip alignments skipped the subprocess, but not half of the
observed traces. SP computes interpretable, local probabilities
revealing that 96.2% of the intended ‘appeal’ subprocesses
were missing.

Using one optimal alignment per trace, RC annotates each
activity with the total number of observed moves (syn-
chronous/model), given in Figure 7. Relying on a single optimal
alignment, RC lacks completeness, e.g., it attributes perfect
compliance to the activity ‘Insert Fine Notification’ (no model
move), while SP assigns a positive skip probability from
inspecting all optimal (skip) alignments. Further, insights from
RC remain at the level of individual activities: 4/5 activities
of the ‘appeal’ subprocess (appeal box) and the entire ‘appeal
bureaucracy’ subprocess (bureaucracy box) are dominated by
model moves, but do not reveal whether the observed traces
were missing the subprocesses partially or entirely. SP resolves
this ambiguity: With a probability of 96.2%, handling an appeal
was expected but not observed. Once it was observed, ‘appeal
bureaucracy’ usually takes place (only 1.8% missing). However,
the appeal decision tends to not be communicated to the
offender (77.8% missing). We conclude that SP is superior to
RC regarding finding and quantifying process level deviations.

Overall, the process insights from skip probabilities go
beyond the ones of existing techniques, are interpretably
quantified, and hence actionable for process improvement.

VI. CONCLUSION

This paper presented skip probabilities that stochastically
quantify model conformance of subprocesses with event logs.
This allows us to reason about not just whether deviations
exist, or that particular activities may miss out, but how likely
deviations at the level of entire subprocesses are.

We defined subprocesses in process trees and their executions,
which compare modeled and observed process behavior for
groups of related activities. We extracted executions from skip
alignments, providing complete deviation information. From
executions we derived skip probabilities for any log and process
tree with stochastic languages. An investigation of a real world
case then showed how this can translate to process insights.

The technique presented has the following limitations: It
considers only all optimal (skip) alignments, and the imple-
mentation approximates them once this set becomes infinite.
This is a direct cause of the yet open challenge of summa-
rizing subprocess probabilities for loops. Additionally, skip
probabilities rely on skip alignments, currently only defined
for hierarchical process models. Finally, work with domain

experts would further validate the technique. Future work may
overcome these limitations by investigating deviations with
non-minimal costs, non-hierarchical models (e.g., for semi-
structured models), exact loop probabilities, and domain expert
involvement. Further research may investigate skip probabilities
for outcome prediction or process comparison.
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